1.4 预备知识: 商映射与弱第一可数性

作为预备知识,本节主要包含两部分的内容.一是在适当的弱第一可数空间中商映射与紧覆盖映射的关系,二是介绍几类弱第一可数空间的初步性质.

先叙述序列商映射与闭映射的等价形式.

引理 1.4.1 设 $f:X \rightarrow Y$ 是映射, 那么

- (1) f 是序列商映射当且仅当若 $f^{-1}(F)$ 是 X 的序列闭集,则 F 是 Y 的序列闭集.
- (2) f 是闭映射当且仅当对于每一 $f^{-1}(y)$ 的开邻域 U, 存在 y 的开邻域 V 使得 $f^{-1}(V)$ ⊂ U.

证明. (1) 设 f 是序列商映射且 f^{-1} (F)是 X 的序列闭集. 如果 F 中的序列 S 在 Y 中收敛于点 y, 则存在 X 中收敛于 $x \in f^{-1}$ (y)的序列 T 使得 f(T)是 S 的子序列,于是 $T \subset f^{-1}$ (F),从而 $x \in f^{-1}$ (F),因此 $y \in F$,故 F 是 Y 的序列闭集.

反之,设 f 不是序列商映射,则存在 Y 中收敛于某点 y 的序列 $\{y_n\}$ 不满足定义 1.2.3(2) 的要求. 不妨设所有的 $y_n \neq y$,让 $F = \langle y_n \rangle$. 如果 $\{x_i\}$ 是 $f^{-1}(F)$ 中的序列且在 X 中 $\{x_i\}$ 收敛于 x,那么 $x \notin f^{-1}(y)$,于是 $x \in f^{-1}(F)$,所以 $f^{-1}(F)$ 是 X 的序列闭集,但是 F 不是 Y 的序列闭集.

(2) 设 f 是闭映射, 对于每一 $f^{-1}(y)$ 的开邻域 U, 让 $V=Y\setminus f(X\setminus U)$, 那么 V 是 y 的开邻域且 $f^{-1}(V)\subset U$. 反之, 设 F 是 X 的闭子集, 对于每一 $y\in Y\setminus f(F)$, $f^{-1}(y)\subset X\setminus F$, 于是存在 y 的开邻域 V 使得 $f^{-1}(V)\subset X\setminus F$, 从而 $V\cap f(F)=\emptyset$, 所以 f(F)是 Y 的闭子集, 故 f 是闭映射. \blacksquare

下述两个引理在我们的证明中将不加说明地被反复使用.

引理 1.4.2(林寿[1995]) 设映射 f:X → Y.

- (1) 若 Y 是 k 空间, f 是紧覆盖映射, 则 f 是商映射.
- (2) 若 Y 是序列空间, f 是子序列覆盖映射, 则 f 是商映射,
- (3) 若 Y 是 Fréchet 空间, f 是商映射, 则 f 是伪开映射,
- (4) 若 X 是序列空间, f 是商映射, 则 f 是序列商映射.

证明. (1) 设 $F \subset Y$ 使得 $f^{-1}(F)$ 是 X 的闭子集. 对于 Y 的任一紧子集 K,存在 X 的紧子集 L 使得 f(L)=K,于是 $F \cap K=f(f^{-1}(F) \cap L)$ 是 Y 的闭子集,从而 F 是 Y 的闭子集,即 f 是商映射.

(2) 设 $F \subset Y$ 使得 $f^{-1}(F)$ 是 X 的闭子集. 若由 F 中点组成的序列 $\{y_n\}$ 在 Y 中收敛于 y_n 则存

在 X 中的紧子集 K 使得 f(K)是[y_n]中的子序列. 不妨设 f(K)=[y_n], 那么对于每一 $n \in \mathbb{N}$, 存在 $x_n \in K \cap f^{-1}(y_n)$, 设 x 是序列 $\{x_n\}$ 在 X 中的一个聚点,则 $x \in f^{-1}(y) \cap f^{-1}(F)$, 于是 $y \in F$, 从而 F 是 Y 的序列闭集,故 F 是 Y 的闭子集,这说明 f 是商映射.

- (3) 对于 X 的开子集 V 及 $f^{-1}(y) \subset V$,若 $y \in Y \setminus \inf(f(V))$,则存在 $Y \setminus f(V)$ 中的序列 $\{y_n\}$ 收敛于 y。置 $Z = \langle y_n \rangle$, $F = f^{-1}(Z)$,那么 $cl(F) \subset F \cup f^{-1}(y)$. 因为 $f^{-1}(y) \subset V$,且 $V \cap F = \emptyset$,所以 $f^{-1}(y) \cap cl(F) = \emptyset$,从而 F 是 X 的闭子集,于是 $f^{-1}(Y \setminus Z) = X \setminus F$ 是 X 的开子集,即 Y \ Z 是 Y 的 开子集,矛盾.故 $y \in \inf(f(V))$,因此 f 是伪开映射.
- (4) 设 f⁻¹(F)是 X 的序列闭集,那么 f⁻¹(F)是 X 的闭子集,于是 F 是 Y 的闭子集,从而 F 是 Y 的序列闭集.由引理 1.4.1(1), f 是序列商映射.

引理 1.4.3 (1) 商映射保持 k 空间性质.

- (2) 商映射保持序列空间性质.
- (3) 伪开映射保持 Fréchet 空间性质.

证明. (1) 设 $f:X \to Y$ 是商映射,其中 $X \not\in k$ 空间. 若 $A \not\in Y$ 的子集使得对于 Y 的每一紧子集 $K, K \cap A \not\in Y$ 的闭子集,如果 $L \not\in X$ 的紧子集,那么 $f^{-1}(A) \cap L = f^{-1}(A \cap f(L)) \not\in X$ 的闭子集,于是 $f^{-1}(A) \not\in X$ 的闭子集,从而 $A \not\in Y$ 的闭子集,故 $Y \not\in k$ 空间.

- (2) 设 $f:X \to Y$ 是商映射,其中 X 是序列空间.若 U 是 Y 的序列开集,则 $f^{-1}(U)$ 是 X 的序列开集,于是 $f^{-1}(U)$ 是 X 的开子集,从而 U 是 Y 的开子集,这说明 Y 是序列空间.
- (3) 设 $f:X \to Y$ 是伪开映射,其中 X 是 Fr é chet 空间. 设 $y \in cl(A) \subset Y$,如果 $f^{-1}(y) \cap cl(f^{-1}(A)) = \emptyset$,那么 $y \in int(f(X \setminus cl(f^{-1}(A))))) \subset Y \setminus cl(A)$,矛盾,于是有 $x \in f^{-1}(y) \cap cl(f^{-1}(A))$,从而存在 $f^{-1}(A)$ 中的序列 $\{x_n\}$ 收敛于 x,因此 x 中的序列 $\{f(x_n)\}$ 收敛于 x,所以 x 是 x

引理 1.4.4 设 f:Z \rightarrow Y. 让 g=id $_{x} \times$ f:X \times Z \rightarrow X \times Y, 那么

- (1) 若 X 是局部紧空间, f 是商映射, 则 g 是商映射.
- (2) 若 f 是完备映射, 则 g 是完备映射.

证明. (1) 对于 $X \times Y$ 的子集 W, 设 $g^{-1}(W)$ 是 $X \times Z$ 的开子集, 任取点 $(x, y) \in W$, 对于

 $z \in f^{-1}(y)$,选取 x 在 X 中的开邻域 U 使得 cl(U)是 X 的紧子集且 $cl(U) \times \{z\} \subset g^{-1}(W)$,那么 $cl(U) \times f^{-1}(y) \subset g^{-1}(W)$. 令 $V = \{\alpha \in Y : cl(U) \times f^{-1}(\alpha) \subset g^{-1}(W)\}$,则(x, y) $\in U \times V \subset W$. 往证 V 是 Y 的开子集. 由于 cl(U)是紧空间,于是 $\pi_2 : cl(U) \times Z \to Z$ 是闭映射,从而 $f^{-1}(V) = \{z \in Z : cl(U) \times f^{-1}(z) \subset g^{-1}(W)\} = \{z \in Z : cl(U) \times \{z\} \subset g^{-1}(W)\} = Z \setminus \pi_2 (cl(U) \times (Z \setminus g^{-1}(W)))$ 是 Z 的开子集,所以 V 是 Y 的开子集,因此 W 是 $X \times Y$ 的开子集,故 f 是商映射.

(2) 对于每一(x, y) \in X×Y, g⁻¹(x, y)={x}×f⁻¹(y)是 X×Z 的紧子集, 所以 g 是紧映射. 另一方面, 对于 X×Z 中每一含 g⁻¹(x, y)的开子集 G, 分别存在 X, Z 的开子集 U 和 V 使得{x}×f⁻¹(y) \subset U×V \subset G. 由于 f 是闭映射, 存在 y 在 Y 中的开邻域 H 使得 f⁻¹(H) \subset V, 于是 U×H 是(x, y)的开邻域且 g⁻¹(U×H)=U×f⁻¹(H) \subset G, 所以 g 是闭映射. 因此, g 是完备映射. ■

引理 1.4.5 (1) 局部紧空间与 k 空间之积空间是 k 空间.

- (2) 设 $\prod_{i\in N} X_i \neq \emptyset$, 则 $\prod_{i\in N} X_i$ 是局部 k_{ω} 空间当且仅当所有的 X_i 是局部 k_{ω} 空间,且至多有限个 X_i 不是紧空间.
- **证明.** (1) 设 X 是局部紧空间, Y 是 k 空间. 让 Z= \oplus {K \subset Y: K 是 Y 的紧子集}, f:Z \rightarrow Y 是自然映射, 则 Z 是局部紧空间且 f 是商映射. 让 g=id $_X \times$ f:X \times Z \rightarrow X \times Y, 由引理 1.4.4(1), g 是商映射. 由于 X \times Z 是局部紧空间,于是 X \times Z 是 k 空间,从而 X \times Y 是 k 空间.
- (2) 若 $\prod_{i \in N} \mathbf{X}_i$ 是局部 \mathbf{k}_{ω} 空间,由于每一 \mathbf{X}_i 同胚于 $\prod_{i \in N} \mathbf{X}_i$ 的闭子空间,于是 \mathbf{X}_i 是局部 \mathbf{k}_{ω} 空间。因为 $\prod_{i \in N} \mathbf{X}_i$ 是局部 \mathbf{k}_{ω} 空间,存在 $\mathbf{n} \in \mathbf{N}$ 使得 $\prod_{i \geq n} \mathbf{X}_i$ 是 \mathbf{k}_{ω} 空间。若存在无限个 $\mathbf{i} \geq \mathbf{n}$ 使得 \mathbf{X}_i 不是紧空间,那么 \mathbf{X}_i 不是可数紧空间,于是 \mathbf{X}_i 含有闭子空间同胚于 \mathbf{N}_i 从而 \mathbf{N}^{ω} 是 \mathbf{k}_{ω} 空间,所以 \mathbf{N}^{ω} 是 $\mathbf{\sigma}$ 紧空间。记 $\mathbf{N}^{\omega} = \bigcup_{n \in N} \mathbf{K}_n$,其中每一 \mathbf{K}_n 是 \mathbf{N}^{ω} 的紧子集,于是 \mathbf{K}_n 在第 \mathbf{n} 个坐标空间上的投影 $\pi_n(\mathbf{K}_n)$ 是有限集,从而存在 $\mathbf{x} \in \mathbf{N}^{\omega}$ 使得每一 $\pi_n(\mathbf{x}) \in \mathbf{N} \setminus \pi_n(\mathbf{K}_n)$,因此 $\mathbf{x} \notin \bigcup_{n \in N} \mathbf{K}_n$,矛盾。故至多有限个 \mathbf{X}_i 不是紧空间。

反之,设所有的 X_i 是局部 k_{ω} 空间,并且至多只有有限个 X_i 不是紧空间. 为证明 $\prod_{i \in N} X_i$ 是局部 k_{ω} 空间,只须证若X,Y是 k_{ω} 空间,则 $X \times Y$ 是 k_{ω} 空间. 设X,Y分别关于紧子集族 $< X_n >$

和<Y_n>具有弱拓扑. 不妨设每一 X_n \subset X_{n+1}, Y_n \subset Y_{n+1}, 往证 X×Y 关于紧子集族<X_n ×Y_n> 具有弱拓扑. 对于 X×Y 的子集 W,设每一 W \cap (X_n × Y_n)是 X_n × Y_n 的开子集,任取(x, y) \in W,不妨设 x \in X₁, y \in Y₁,对于每一 n \in N,由归纳法,可构造 x 在 X_n 中的开邻域 V_n,y 在 Y_n 中的开邻域 U_n,满足 cl(V_n) \subset V_{n+1},cl(U_n) \subset U_{n+1} 且 cl(V_n) \times cl(U_n) \subset W. 令 V= $\bigcup_{n \in \mathbb{N}}$ V_n, $\mathbb{U} = \bigcup_{n \in \mathbb{N}}$ U_n,那么 V 与 U 分别是 x 和 y 在 X 和 Y 中的开邻域且 V×U \subset W. 因而 W 是 X×Y 的开子集,故 X×Y 关于<X_n × Y_n > 具有弱拓扑,所以 X×Y 是 k_n 空间. ■

引理 1.4.6 设 2 是空间 X 的子集族, 那么

- (1) 若 **P**是 X 的弱基, 则 **P**是 X 的 sn 网.
- (2) 若 尹是序列空间 X 的 sn 网,则 尹是 X 的弱基.
- **证明.**(1) 设 $\mathbf{P} = \bigcup_{x \in X} \mathbf{P}_x$ 是空间 X 的弱基,我们只须证明每一 \mathbf{P}_x 的元是 x 在 X 中的序列邻域. 对于 $\mathbf{P} \in \mathbf{P}_x$,若存在 X \ P 中的序列 $\{\mathbf{x}_n\}$ 收敛于 x,令 $\mathbf{U} = \mathbf{X} \setminus \langle \mathbf{x}_n \rangle$,则 \mathbf{U} 不是 X 的开子集. 另一方面,对于每一 $\mathbf{z} \in \mathbf{U}$,若 $\mathbf{z} = \mathbf{x}$,则 $\mathbf{P} \subset \mathbf{U}$,若 $\mathbf{z} \neq \mathbf{x}$,则 $\mathbf{z} \in \mathbf{X} \setminus [\mathbf{x}_n]$,于是有 $\mathbf{Q} \in \mathbf{P}_z$ 使得 $\mathbf{Q} \subset \mathbf{X} \setminus [\mathbf{x}_n]$,从而 \mathbf{U} 是 X 的开子集,矛盾. 这表明 P 是 x 在 X 中的序列邻域.
- (2) 设 $\mathbf{P} = \bigcup_{x \in X} \mathbf{P}_x$ 是序列空间 X 的 sn 网. 若 G \subset X 使得对于每一 x \in G 存在 P \in \mathbf{P}_x ,有 P \subset G,那 么 G 是 G 中每一点的序列邻域,于是 G 是 X 的序列开集,从而 G 是 X 的开子集,故每一 \mathbf{P}_x 是 x 在 X 中的弱邻域基,所以 \mathbf{P} 是 X 的弱基.

由引理 1.4.6 易验证,对于空间 X 的覆盖,基 \Rightarrow 弱基 \Rightarrow sn 网 \Rightarrow cs 网 \Rightarrow cs*网. gf 可数(第一可数)空间等价于 snf 可数(sof 可数)的序列空间.

引理 1.4.7 空间 X 是 Fréchet 空间当且仅当 X 的每一点的序列邻域是该点的邻域.

证明. 设空间 X 是 Fréchet 空间, U 是 X 中某点 x 的序列邻域, 若 x \in X \\ int(U), 则存在 X \\ U 中的序列{x_n}收敛于 x, 这与 U 是 x 的序列邻域相矛盾, 所以 U 是 x 在 X 中的邻域. 反之, 设 X 的每一点的序列邻域是该点在 X 中的邻域, 若 X 不是 Fréchet 空间, 则存在 X 的子集 A 和 x \in cl(A)使得 A 中没有序列收敛于 x, 于是 X \ A 是 x 的序列邻域, 从而 X \ A 是 x 在 X 中的邻域, 即 x \in int(X \ A)=X \ cl(A), 矛盾, 故 X 是 Fréchet 空间. \blacksquare

推论 1.4.8 (1) 空间 X 是第一可数空间当且仅当 X 是 snf 可数的 Fréchet 空间.

(2) 空间 X 是半度量空间当且仅当 X 是对称度量的 Fréchet 空间. ■ 为进一步说明序列空间的性质, 我们定义序列闭包拓扑空间.

定义 1.4.9(Franklin[1967]) 每一空间(X, τ)可重新定义一拓扑 σ_{τ} : O $\in \sigma_{\tau}$ 当且仅当 O 是(X, τ)的序列开集. 空间(X, σ_{τ})称为(X, τ)的序列闭包拓扑空间,简记为 σ X.

显然, σ X 是序列空间,X 和 σ X 有相同的收敛序列,X 与 σ X 中的同一点有相同的序列邻域。 对于空间 X 及 A \subset X,记

 $\operatorname{cl}_{\sigma}(A)=\operatorname{cl}_{\sigma^{X}}(A).$

 $cl_s(A)=\{x\in X:$ 存在 A 中的序列收敛于 $x\}$.

 $\operatorname{int}_{s}(A)=X\setminus\operatorname{cl}_{s}(X\setminus A).$

引理 1.4.10 对于空间 $X \not \subset A \subset X$, $A \not \subset X$ 中的序列邻域当且仅当 $x \in int_s(A)$.

证明. 设 A 是 x 在 X 中的序列邻域, 若 x $\not\in$ int $_s$ (A), 那么 x \in cl $_s$ (X \ A), 于是存在 X \ A 中的序列收敛于 x, 这与 A 的假设相矛盾. 反之, 设 A 不是 x 在 X 中的序列邻域, 那么存在 X \ A 中的序列收敛于 x, 从而 x \in cl $_s$ (X \ A), 故 x $\not\in$ int $_s$ (A).

引理 1.4.11 对于空间 X, 下述条件相互等价:

- (1) σX 是 Fréchet 空间.
- (2) 对于每一 A \subset X, $\operatorname{cl}_{\sigma}$ (A)= cl_{s} (A).
- (3) 对于每一 $A \subset X$, $cl_s(A)$ 是 X 的序列闭集.
- (4) 对于每一 $A \subset X$, int $_s(A)$ 是 X 的序列开集.

证明. 由定义 1.4.9, (1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4). (4) \Rightarrow (1). 设 A 是点 x 在 σ X 中的序列邻域,则 A 是 x 在 X 中的序列邻域,于是 x \in int $_s$ (A), 而 int $_s$ (A)是 σ X 的开子集. 由引理 1.4.7, σ X 是 Fré chet 空间.

引理 1.4.12 空间 X 是强 Fréchet 空间当且仅当 X 是 Fréchet 的 α_4 空间.

定理 1.4.13 对于空间 X, 下述条件相互等价:

- (1) σX 是 gf 可数空间.
- (2) X 是 snf 可数空间.
- (3) X 是 csf 可数的 α_4 空间.

证明.(1)⇒(3)是显然的.

(3) ⇒(2). 设 X 是 csf 可数的 α_4 空间. 对于每一 x ∈ X,让 $\boldsymbol{\mathcal{P}}_x$ 是 x 在 X 中可数的 cs 网. 对于任一 x ∈ U ∈ τ ,置

 $\mathbf{P}_{x} = \{ \cup \mathbf{P}_{x} : \mathbf{P}_{x} \in \mathbf{P}_{x} \leq \mathbf{P}_{x} \leq \mathbf{P}_{x} \}$ 上 $\mathbf{P}_{x} \in \mathbf{P}_{x} \in \mathbf{P}_{x} \in \mathbf{P}_{x}$

则 $\mathbf{7}_x$ 是可数的. 如果 $\mathbf{7}_x$ 不是 \mathbf{x} 在 \mathbf{X} 中的网, 那么存在 \mathbf{X} 的开子集 \mathbf{G} 使得 $\mathbf{x} \in \mathbf{G}$ 且对于每一 $\mathbf{F} \in \mathbf{7}_x$ 有 $\mathbf{F} \not\subset \mathbf{G}$. 记

$$\{P \in \mathcal{P}_x : P \subset G\} = \langle P_i \rangle, F_n = \bigcup_{i \leq n} P_i, n \in \mathbb{N}.$$

则每一 F_n 不是x在X中的序列邻域. 因为 \mathbf{P}_x 是x在X中的 cs M,对于每一 $i \in N$,存在X中收敛于x的序列 T_i 和 $n_i \in N$ 使得 $T_i \subset P_{n_{i+1}} \setminus F_{n_i}$ 且 $n_{i+1} > n_i$. 置 $T = \{x\} \cup (\bigcup_{i \in N} T_i)$. 那么T是x在X的扇. 因为X是 α_4 空间,T有对角 $\{x_k\}$ 收敛于x,于是存在 $i \in N$ 使得 P_i 含有 $\{x_k\}$ 的子序列 $\{x_{k_m}\}$,从而存在m, $j \in N$ 使得 $j \ge i$ 且 $x_{k_m} \in T_j$,因此, $x_{k_m} \in P_i \cap (X \setminus F_{n_j}) = \emptyset$,矛盾. 故 \mathbf{P}_x 中的元的有限交的全体是x在x中的可数的 sn M,从而x2 snf 可数空间.

(2) ⇒(1). 设 X 是 snf 可数空间. 对于每一 $x \in X$, 设 $\{P_n\}$ 是 X 在 x 的递减的 sn 网. 显然, 每 $-P_n \not\in \sigma X$ 在 x 的序列邻域. 若 G 是 x 在 X 中的序列邻域, 如果每一 $P_n \not\subset G$, 则存在序列 $\{p_n\}$

使得每一 $p_n \in P_n \setminus G$,于是 $\{p_n\}$ 在X中收敛于x,从而 $\{p_n\}$ 是终于G的,矛盾. 因此,存在 $n \in N$ 使得 $P_n \subset G$. 这说明 $\{P_n\}$ 是 σ X 在 x 的 sn 网,所以 σ X 是 snf 可数的序列空间,即 σ X 是 gf 可数空间.

下面介绍正则化拓扑空间.

定义 1.4.14(Nogura, Shibakov[1995]) 对于空间(X, τ)及 $x_0 \in X$ 可重新定义拓扑 τ^* 如下: 对于 $x \neq x_0$, $\{x\} \in \tau^*$, x_0 的邻域基取为原拓扑 τ 在 X 中的邻域基. 称空间(X, τ^*)为(X, τ)在 x_0 的正则化拓扑空间.

引理 1.4.15 设空间(X, τ^*)是空间(X, τ)在 x_0 的正则化拓扑空间, 那么

- (1) (X, τ*)是正则空间.
- (2) 若(X, τ)是 α_4 空间,则(X, τ^*)是 α_4 空间.
- (3) 若 (X, τ) 是强 Fréchet 空间,则 (X, τ^*) 是强 Fréchet 空间.

证明. 易验证, (X, τ^*) 是正则空间.

若(X, τ)是 α_4 空间,如果 x \in X 且 F是(X, τ^*)在 x 的扇,那么 x=x $_0$.由于 τ 与 τ^* 在 x $_0$ 有相同的收敛序列,于是 F在(X, τ^*)中有对角收敛于 x,故(X, τ^*)是 α_a 空间.

 $\ddot{z}(X, \tau)$ 是强 Fréchet 空间,如果 $\{A_n\}$ 是 X 中递减的子集列且 $x \in \bigcap_{n \in N} \operatorname{cl}_{\tau^*}(A_n)$,若 $x \neq x_0$,则 $x \in \bigcap_{n \in N} A_n$,取每一 $x_n = x \in A_n$,这时序列 $\{x_n\}$ 在 $\{x_n\}$ 在 $\{x_n\}$ 中收敛于 $\{x_n\}$

1.5 例

本节例举几个典型的例子说明一些空间类的不蕴含关系,这些例子的大部分已在林寿[1995] 介绍过.为了叙述的简明起见,我们引用了后几章中的一些结果.对于完全正则空间 X, βX 是 X 的 Stone-Čech 紧化. 当 X 是离散空间时, βX 不存在非平凡的收敛序列(Engelking[1977]).

例 1.5.1 林寿[1995]的例 1.8.6 和例 2.9.26: Arens 空间 S₂.

- (1) S, 是没有对角的梳, S, 是具有可数弱基的正则空间.
- (2) S, 不是 Fréchet 空间.
- (3) S_2 是可分度量空间的 1 序列覆盖的商紧映象, S_{α} 是 S_2 的完备映象.
- **例 1.5.2** 林寿[1995]的例 1.8.7、命题 2.7.21 和命题 3.8.22: 扇空间 S_{α} .
- (1) S_{α} 是度量空间的闭映射,于是 S_{α} 是 Fréchet 空间,但是 S_{α} 不是强 Fréchet 空间,不是 snf 可数空间.
 - (2) S_{α} 是没有对角的扇, S_{α} 是 \aleph_0 空间.
 - (3) S_a, 不具有点可数 cs*网.
 - (4) (S_@)² 不是 k 空间
 - **例 1.5.3** 林寿[1995]的例 1.8.4: Gillman-Jerison 空间 ψ (D).

设 D 是无限集. D 的可数无限子集的族 \mathcal{A} 称为几乎互不相交的,若 \mathcal{A} 中任两不同元之交为有限集. 设 \mathcal{A} 是 D 的极大几乎互不相交族,则 \mathcal{A} 是不可数的. 否则,记 \mathcal{A} 是 \mathcal{A} ,取 D 的可数无限子集 E 使得对于每一 \mathbf{i} \in N 有 \mathbf{E} \cap A $_i$ \models 1,那么 E $\not\in$ \mathcal{A} 且 \mathcal{A} \cup {E}是几乎互不相交族,矛盾. 置 ψ (D)= \mathcal{A} \cup D,具有下述拓扑的空间 ψ (D)称为 Gillman-Jerison 空间:D 中的点取为 ψ (D)的孤立点,而对于 \mathbf{A} \in \mathcal{A} ,A 在 ψ (D)中的邻域基取为{{A} \cup (A \setminus F) : F \in A $^{\circ\circ}$ },则 ψ (D)是局部紧空间,而 ψ (N)是可展空间.

让 $f: \psi(N) \to S_1$ 使得 $f(A) = \{0\}$ 且 f(n) = 1/n,那么 f 是闭映射.若 f 是紧覆盖映射,则存在 $\psi(N)$ 的紧子集 K 使得 $f(K) = S_1$,于是 $N \subset K$,从而 $K = \psi(N)$,矛盾.故 f 不是紧覆盖映射.

下面通过 ψ (N)构造两个新的空间. 让 $X=\psi$ (N) \cup {a}是 ψ (N)的单点紧化,则 X 是紧的序列空间,且不含有子空间同胚于 S_2 和 S_{ω} . 任取 \mathcal{A} 的无限子集 $\mathcal{A}=<\!\!A_n>$,由于在 ψ (N)中 \mathcal{A} 是闭离散子集,所以序列{ A_n }在 X 中收敛于 a. 对于每一 n \in N,置 $A_n=<\!\!a_{nm}>$,那么在 ψ (N)中序列{ a_{nm} } m 收敛于 A_n . 让 $M=\{a\}\cup\mathcal{A}'\cup\{a_{nm}:n,m\in\mathbb{N}\}$,则 M 具有可数的 sn 网. 因为{ a_{nm} } 的任一子序列在 X 中都不收敛于 a,所以 σ M 同胚于 S_2 .

取 Y=X/A, 让 f:X \rightarrow Y 是自然商映射,那么 Y 是紧的序列空间,且不含有子空间同胚于 S $_{2}$ 和 S $_{\alpha}$. 令 T=f(M),那么 T 有可数的 cs 网且 σ T 同胚于 S $_{\alpha}$. \blacksquare

例 1.5.4 林寿[1995]的例 2.8.16: 存在局部紧的度量空间 M 和紧覆盖, 1 序列覆盖, 商, 有限到一映射 $f:M \to X$ 使得

- (1) X 是可分的正则空间.
- (2) X 具有点可数弱基.
- (3) X 不是亚 Lindelöf 空间.
- (4) X 不具有紧可数 k 网.

定义 $X=I\times S_1$, $Y=I\times (S_1\setminus\{0\})$, 集合 X 赋予下述拓扑: Y 作为 X 的子空间具有通常的欧氏拓扑. 对于(t, 0) $\in X$ 的邻域基元具有形式: $\{(t,0)\}\cup (\bigcup_{k\geq n}V(t,k))$, $n\in N$, 其中 V(t,k)是点(t, 1/k) 在欧氏子空间 $I\times \{1/k\}$ 中的开邻域. 置 $M=(\bigoplus_{n\in N}I\times\{1/n\})\oplus (\bigoplus_{t\in I}\{t\}\times S_1)$, 那么 M 是局部紧的度量空间,让 f 是从 M 到 X 上的自然映射,则 f 是紧覆盖的商有限到一映射. 显然,X 是可分的正则空间. 易验证,X 具有点可数弱基. 由于可分的亚 Lindelöf 空间是 Lindelöf 空间,而 X 不是Lindelöf 空间,所以 X 不是亚 Lindelöf 空间.

空间 X 称为可数亚紧空间,若 X 的每一可数的开覆盖存在点有限的开加细. 我们引用 Ishikawa[1955]的可数亚紧空间的下述刻画: 若 $\{C_n\}$ 是空间 X 的递减的闭子集列且 $\bigcap_{n\in N}C_n=\emptyset$,则存在 X 的开子集列 $\{U_n\}$ 使得每一 $C_n\subset U_n$ 且 $\bigcap_{n\in N}U_n=\emptyset$

例 1.5.5 Sakai[1997b]的例 2: 存在局部可数的正则空间 X 使得 X 的所有紧子集是有限集,但是 X 不是可数亚紧空间.

设 D 是基数为 2^{ω} 的子集,赋予 D 离散拓扑. 让 $\{P_{\alpha}: \alpha < 2^{\omega}\}$ 是 D 的可数无限子集的几乎互不相交族使得对于 D 的每一不可数子集 P 存在 $\alpha < 2^{\omega}$ 有 $P_{\alpha} \subset P$. 这种集族的存在可见 Blacar, Simon[1989]的例 4.2. 对于每一 $\alpha < 2^{\omega}$,让 $\{P_{\alpha n}\}$ 是 $\{P_{\alpha n}\}$ 的无限子集的互不相交族. 令 $P=\{P_{\alpha n}\}$:

 $\alpha < 2^{\,\omega}$, $n \in \mathbb{N}$ }. 对于每一 $\alpha < 2^{\,\omega}$ 和 $n \in \mathbb{N}$, 记 $P_{\alpha n}^* = \operatorname{cl}_{\beta D} P_{\alpha n} \setminus P_{\alpha n}$, 取定点 $p_{\alpha n} \in P_{\alpha n}^*$. 让 $X = D \cup \{p_{\alpha n} : \alpha < 2^{\,\omega}, n \in \mathbb{N}\}$, 集合 X 被赋予 β D 的子空间拓扑,则 X 是正则空间. 因为 $\boldsymbol{\mathcal{P}}$ 是几乎互不相交的, $X \setminus D$ 是 X 的闭离散子空间. 易验证,X 是局部可数空间且 X 的每一紧子集是有限的.

我们证明 X不是可数亚紧空间. 对于每一 $n \in N$,让 $C_n = \{p_{\alpha k} : \alpha < 2^{\alpha}, k \geq n\}$,那么每一 C_n 是 X 的闭子集且 $\bigcap_{n \in N} C_n = \emptyset$.若存在开集 $U_n \supset C_n$ 使得 $\bigcap_{n \in N} U_n = \emptyset$,因为 D 是不可数的,存在 $n \in N$ 使得 $D \setminus U_n$ 是不可数的,于是存在 $\alpha < 2^{\alpha}$ 使得 $P_{\alpha} \subset D \setminus U_n$,从而 $p_{\alpha n} \in C_n \cap cl(D \setminus U_n) = \emptyset$,矛盾.故 X 不是可数亚紧空间. \blacksquare

例 1.5.6 林寿[1995]的例 2.9.27: 存在局部紧度量空间 Z 以及紧覆盖的商有限到一映射 $f:Z \to X$, 完备映射 $g:X \to Y$ 具有下述性质

- (1) X 是具有点可数闭 k 网的正则空间.
- (2) X 不具有点可数 cs 网.
- (3) X 不是局部可分空间.
- (4) Y 含有闭子空间同胚于 $S_{\alpha l}$.

对于 $x \in I$,设 S_x 同胚于 S_1 ,置 $Z = I \oplus (\bigoplus_{x \in I} S_x)$,则 Z 是局部紧的度量空间. 让 X 是将每一 $x \in I$ 与 S_x 的极限点贴合成一点得到的商空间,用 f 表示这个商映射,则 f 是有限到一的紧覆盖映射. 将 X 的紧子集 I 贴合成一点得到的商空间记为 Y,用 g 表示这个商映射,则 g 是完备映射. 这 时 X 是具有点可数闭 k 网的正则空间,但是 X 不具有点可数 $ext{cs}$ 网,X 不是局部可分空间. Y 含有闭子空间同胚于 S_{ox} .

我们介绍刘川和 Tanaka[1996a]构造的上述空间 X 的一般化. 设 M 是度量空间. 对于每一 $x \in M$, 让 T_x 是收敛于 x 的序列使得 $T_x \cap M = \emptyset$ 且这些 T_x 是两两互不相交的. 令 $S_x = T_x \cup \{x\}$. 置 $X_M = M \cup (\bigcup_{x \in M} T_x)$ 并且 X_M 关于 $\{M\} \cup \{S_x : x \in M\}$ 具有弱拓扑,于是 X_M 由空间族 $\{M \cup T_x : x \in M\}$ 控制, X_M 是度量空间 $M \oplus (\bigoplus_{x \in M} S_x)$ 的商,有限到一映象. \blacksquare

例 1.5.7 林寿[1995]的例 1.8.8: Michael 空间.

取定 $p \in \beta N \setminus N$,令 $X=N \cup \{p\}$. 集合 X 赋予 βN 的子空间拓扑称为 Michael 空间. 显然, X 是所有紧子集为有限集的正则空间,于是 X 是 \aleph_0 空间,但是 X 不是 k 空间.

例 1.5.8 林寿[1999b]的例 4.3 和 Steen, Seebach[1978]的例 78: 半园盘拓扑空间 X.

- (1) X 不是正则空间.
- (2) X 是可展空间.
- (3) X 不是亚 Lindelöf 空间.
- (4) X 不具有点可数的 cs*网.
- (5) X 具有局部可数且 σ 离散的 k 网.

记 τ 是平面 R^2 的欧氏拓扑, $S=\{(x,y): x,y\in R,y>0\}$, $L=\{(x,0): x\in R\}$ 且 $X=S\cup L$. 在X上赋 予半园盘拓扑 $\tau^*=\tau_{|X}\cup\{\{x\}\cup(S\cap U): x\in L, U\in \tau\}$, 称(X,τ^*)为半园盘拓扑空间,则 X 是 T_2 , 非正则,可分,非 Lindelöf,第一可数空间(Steen,Seebach[1978]). 利用 R^2 的球形邻域易验证 X 是可展空间。由于可分的亚 Lindelöf 空间是 Lindelöf 空间,所以 X 不是亚 Lindelöf 空间,从 X 不具有点可数基,由推论 X 2.1.7(1)知 X 不具有点可数的 X Cs*网。所以(1)~(4)成立。

置 $\mathcal{P}=\{\{p\}:p\in L\}\cup\{B(q,1/n)\cap S:q$ 的两个坐标均是有理数, $n\in N\}$. 由于 L是 X的闭离散子空间,所以 \mathcal{P} 是 X的局部可数且 σ 离散的集族,往证它是 X的 k 网. 由引理 2.1.6,只须证 \mathcal{P} 满足:若 X 中的序列 $\{z_n\}$ 收敛于 $z\in U\in \tau^*$,则存在 $P\in \mathcal{P}$ 使得 $P\subset U$ 且 P 含有 $\{z_n\}$ 的无限项.不妨设所有的 $z_n\in S$,则在欧氏拓扑中序列 $\{z_n\}$ 仍收敛于 z_n 于是存在两个坐标均是有理数的点 q 和 k, $m\in N$ 使得 $\{z_n:n\geq k\}\subset B(q,1/m)\cap S\subset U$. 因此 \mathcal{P} 是 X 的 k 网.故 X 具有局部可数且 σ 离散的 k 网,所以(5)成立. \blacksquare