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ON PERFECT IMAGES OF ;-SPACES

TINGMEI GAO* AND SHOU LIN**

Communicated by Yasunao Hattori

ABSTRACT. A space X is called a p-space if it can be embedded in the
product of countably many paracompact F,-metrizable spaces. K. Nagami
in [15] posed the following problem: is the perfect image of a p-space a
u-space?

By the saturated sets-topology of submetrizable spaces, in this paper
the following theorem is proved, which gives a partial answer to Nagami’s
problem.

Theorem. Let (X,7) be a p-space and f : (X,7) = (Y,U) a perfect map-
ping. Then

(2) there are topologies {Tn}new on X satisfying for each n € N there is
a saturated sets-topology Sp on (f,Tn, 7o) such that 1o C Sn C 75

(4) if Sn C Tn for each n € N, then (Y,U) is a p-space.

1. INTRODUCTION

M;-spaces for i = 1,2 and 3 were introduced by J. Ceder [1], which are im-
portant classes in generalized metric spaces [6, 10]. It is easy to see that every
Mi-space is an Ms-space, and every Ms-space is an Ms-space. J. Ceder didn’t
know if any of these classes were in fact different. In the 1970s, G. Gruenhage [5]
and H.J.K. Junnial [8] independently proved that Ms-spaces and Ms-spaces are
the same. But to this day, it is not known if Mjs-spaces and M;-spaces are the
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same [13]. There are classes of spaces formally stronger than M;-spaces for which
it is as yet undetermined whether every Mjs-space belongs to the classes [7]. The
most pertinent of these classes is the class of u-spaces, introduced by K. Nagami
for dimension theory reasons [14, 15]. S. Oka [16] and T. Mizokami [11] showed
that dimX = IndX for every p-space X. Mizokami [12] proved every Mjs-u-space
is M1~

A space is called an F,-metrizable space if it is the union of countably many
closed metrizable subspaces. A space X is called a p-space in [14] if X can be
embedded in the product of countably many paracompact F,-metrizable spaces.
A mapping f: X — Y is called a perfect mapping if f is continuous closed onto
and f~1(y) is compact for every y € Y. Perfect mappings are a well-behaved
class in terms of various mappings. The following interesting and long-standing
difficult Nagami’s problem [15] is still open.

Proposition 1.1. Is the perfect image of a p-space a p-space?

H.J.K. Junnila and T. Mizokami proved that the closed image of an Mj3-F,-
metrizable space is a p-space [9], and K. Tamano [19] gave an example which is
a continuous image of a separable metric space but not a p-space. They gave a
partial answer to Nagami’s problem.

In this paper, we consider Nagami’s problem, give it a partial answer. Let
f: X = Y be a perfect mapping and X a u-space, we can study the pre-image
X instead of studying the image Y.

In this paper, all mappings are onto, all spaces are regular and T}-spaces, and
the letters N, w denote the set of positive integers, the set of natural numbers,
respectively. For undefined notation and terminologies, the reader may refer to
[4, 6].

2. SOME LEMMAS AND PROPOSITIONS

In this section, a characterization of u-spaces is given by u-bases, and a sat-
urated sets-topology on a mapping is introduced, which will play an important
role studying perfect images of p-spaces. A topological space (X, 7) is called sub-
metrizable [6] if there exists a metric p on X such that the metric topology 7,
induced by p is coarser than 7, and the metric p on X is called a submetric on X.
A space is called a o-space [6] if it has a o-locally finite network, where a family
P of subsets of a space X is called a network [4] for X if, whenever € U with
U open in X, there is P € P such that x € P C U. It is well-known that every
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u-space is a paracompact o-space, and every paracompact o-space is a submetriz-
able space [6]. V. Popov [17] gave an example which shows the perfect image of
a hereditarily paracompact submetrizable space needs not be submetrizable.

If p is a metric on a set X, the metric topology on X induced by p is always
denoted by 7, in this paper. The following lemmas show that paracompact o-
spaces have special submetrics.

Lemma 2.1. [18, Lemma 2.20] Let (X, 7) be a paracompact o-space. If D is a
o-discrete family of open subsets of X, then there is a submetric d on X with
D C 7y.

Lemma 2.2. [2, Theorem 2.8] Let (X,7x) be a paracompact o-space and f :
(X,7x) = (Y,7v) a perfect mapping. If po,do are submetrics on spaces X,Y
respectively, then there are a submetric metric p on (X, 7x) and a submetric d on
(Y, 1v) such that f: (X, p) = (Y,d) is a perfect mapping, T,, C 7, and 74, C Tq.

K. Tamano [19] showed the following result, which constructed some special
metric and bases studying p-spaces.

Theorem 2.3. [19, Lemma, p. 260] A topological space (X,T) is a p-space if
and only if there is an increasing sequence {7, }new of topologies on X satisfying
the following conditions:

(7) UnEw Tn 1S a base of T;

(i) each (X, 7,) is paracompact and (X, 7o) is metrizable;

(#i1) for every n € N, there is a sequence { X, }ien of To-closed sets of X such
that X = U;en Xni, and Ty|x,,, = Tolx,,; for each i € N.

For convenience’s sake, a family | J,,, 7 of subsets of a u-space (X, 7) is called
a p-base if it satisfies (i)-(iii) of Theorem 2.3. Let (X, 7) have a p-base (J, ., Tn-
Then each (X, 7,) is an F,-metrizable space by (ii) and (iii) of Theorem 2.3.

Let A and B be families of subsets of a topological space X. Denote

ANB={ANB:Ac A Bec B}

Proposition 2.4. Let |J,
metric of (X, 7), then there exists a p-base |
Tn C 1), for each n € w.

Tn be a p-base for a p-space (X, 7). If p is a sub-
' for X such that 7, C 7 and

new Tn

PrOOF. Let D and Dy be o-discrete bases of (X, 7,) and (X, 79), respectively.
Since (X, 7) is a paracompact o-space, by Lemma 2.1, there is a submetric d on
X such that DUDy C 7y C 7.
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Let 7y = 74. Then 7, U7ty C 7). For each n € N, let B,, = 7, A 75. Then
T Uty C By, C Bpy1 C 7, and B, is a base for some topology 7/ of X. Thus

T UTqg C 15, C7Tpyq C 7 for each n € w. By U,eo, Tn € Upew T C 7,

ncw 'n

(i) Unen T s a base of T.

(ii) Each (X, 7)) is paracompact and (X, 7)) is metrizable.

The space (X, 7)) is regular, because it is easy to see that cl, (U NV) C
cl;, UNcl.,V for each U,V C X. To complete the proof it is enough to prove that
every cover O of X by members of B,, has a o-locally finite open refinement in
(X, 7). Let P be a o-locally finite network for the F,-metrizable space (X, 7,)
and £ a o-locally finite base for the metrizable space (X,74). Denote O by
{UxNE) : Uy €1, and E) € 74 for each A € A}, and put

Q={PNE:PeP,Ec& PCU,and E C E, for some X € A}
:{QWZVEF}

Then Q is a cover of X, since P is a network for (X, 7,,) and & is a base for (X, 74).
For each v € I', there are P, € P, E, € £ and A\, € A such that Q, = P, N E,,
P, C Uy, and E, C E, . It is well-known that if {Fi},cs is a locally finite
family of subsets of a paracompact space, then there is a locally finite family
{Vs}ses of open subsets such that Fy C V; for each s € S [4, Remark 5.1.19].
Since {P, : v € I'} is o-locally finite in the paracompact space (X, 7,), there is
a o-locally finite family {V, : v € I'} of open subsets in (X, 7,) such that each
P, CcV,CUyx,. Lt W={V,NE, :v e I'l. It can be checked that W is a
o-locally finite refinement of O in (X, 7). Hence (X, 7,,) is paracompact.

(iil) For every n € N, there is a sequence {Xp;}ien of To-closed sets of X such
that X = J;en Xnis each 7,)x,, = 7olx,, and each 7)|x,, = 79| x,.-

In fact, 7, Utg C 74 = 75 by DU Dy C 74. It follows from (iii) of Theorem 2.3
that there is a sequence {X;}ien of To-closed sets of X such that X = J;cy Xni
and each 7,|x,, = To|x,,- Then each X,; is a 7)-closed set of X.

We will prove 7} |x,, = 7)|x,.- It is obvious that 7|x,, C 7)|x,, by 75 C 7/,.
Let z € ON X,; with O € 7). Since 1, A 74 is a base of 7], there are U € 7, and
E € 1gsuch that t e UNE C O. Then UN X,,; € Tulx,, = Tolx,; C Tdlx,.:s
EnX, € Td|X and x € (UﬁXm)ﬁ(EﬁXm) cONX,;. So T;L|Xni C Td|Xm =

Té‘Xni' U

ni?

Let f: (X,7) — (Y,U) be a mapping. A subset V of X is called a saturated
set on the mapping f if V = f=1(f(V)). For each O C X, define a set

$0) =\ J{F '(v) :y € ¥ and f7'(y) € O}
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The following can be checked easily that

(1) the set S(O) is a saturated set on f;

(2) a subset V of X is saturated if and only if V = S(V);

(3) a point y € £(S(0)) if and only if f~*(y) C S(0);

(4) S(0) =0\ fH(f(X\0)) cO.

Symbols S(O) is used always with the same meaning throughout this paper.
Next we introduce some properties of the set S(O).

Proposition 2.5. Assume f: (X, 7) — (Y,U) be a mapping. Then
(’L) S(Ol) n S(Og) = 5(01 n 02) fO?” each 01,02 C X,'
(i) S(Uaeca 5(0a)) = Uaea S(On) for each Oy C X;
(#i1) f(S(O1)) N f(S(02)) = f(S(O1)NS(02)) for each 01,05 C X;
(i) fF(X\S(0O)) =Y\ f(S(O)) for each O C X.

ProOF. (i) Let y € Y and f~'(y) C S(O1) N S(O2). Then f~(y) C O1 N O,
thus ffl(y) C S(Ol n 02) Hence, S(Ol) N S(OQ) C S(Ol N 02)

On the other hand, let y € Y and f~!(y) C S(O1NO2). Then f~1(y) C O1NOy,
thus f~1(y) € S(0O1) N S(O2). Hence S(O1 N O3) C S(0O1) N S(02).

(ii) It is clear that S(Uyes S(0a)) C Unen S(Oa). Let y € Y and f~1(y) C
Uaea S(0a). Then f~1(y) € S(Unea S(Oq)) by the definition of S(U,e 4 S(Oa))-
Thus [J,e 2 S(0a) € S(Upen S(Oq)). Therefore, S(U,ex 5(0a)) = Ugen S(Oa).

(iii) It is clear that f(S(01) N S(02)) C f(S ( 1)) N f(S(02)). On the other
hand, let y € £(S(01)) N f(S(Oz2)). Then f~(y) C S(01) N S(O2), and y €
f(5(01) N'5(02)). Thus f(S(01)) N f(S(02)) C f(S(01) N S(Oz)). Hence,
f(S(01)) N f(S(02)) = f(5(01) N 5(02)).

(iv) Since S(O) is a saturated set on f, X \ S(O) = X \ f~1(f(S(0))) =

S\ F(S(0))), thus (X \ S(0)) = Y\ £(S(0). o

Lemma 2.6. [3, Proposition 1][2, Lemma 2.2] Let (X, 7) be a topological space
and f : (X,7) = (Y,U) a continuous mapping. Then the following results are
equivalent.

(1) f is a closed mapping.

(1) {S(O): 0er}CTandUU ={f(S(0)):0 € 7}.

(#33) If O € 7, then S(O) € T and f(S(0O)) € U.

Corollary 2.1. Let f : (X,7) — (Y,U) be a closed continuous mapping. The
family {S(O) : O € 7} is a topology for X and the family {f(S(0)):0 € 1} is a
topology for'Y .

PROOF. By (i) of Proposition 2.5, {S(O) : O € 7} is closed under finite intersec-
tions. Let O, € 7 for each a € A. Then J,c 4 S(On) = S(U,ea S(Oa)) by (ii) of
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Proposition 2.5, and | J, 4 S(Oa) € 7 by (iii) of Lemma 2.6. Thus {S(0) : O € 7}
is closed under unions. Hence, {S(O) : O € 7} is a topology for X. In the same
way, we can prove that {f(S(0)): O € 7} is also a topology for Y. O

In order to obtain non-trivial properties of the topology consisting of saturated
sets on f, we need add some conditions related the mapping f and the topologies
on X.

Proposition 2.7. Let (X,7) be a topological space and f : (X,7) — (Y,U) a
continuous mapping. If 19 is a topology of X, then the family

Q={SO)NV:0€eTandV €15}
is a base of some topology for X.

PROOF. Obviously, X = S(X)NX € Q. Let 01,0, € 7, and V4, V5 € 79. By (i)
of Proposition 2.5, we have (S(01)NV1)N(S(02)NVa) = S(O1NO2)N(ViNV,) € Q.
Hence, Q is a base of some topology for X. O

The topology S generated by the base Q in Proposition 2.7 is called a saturated
sets-topology [3, Definition 1] on (f,7,79). It is obvious that the topology S is
generated by the subbase {S(O) : O € 7} U7™. If f: (X,7) = (Y,U) is a
continuous closed mapping and a topology 7y of X is coarser than 7, then the
saturated sets-topology on (f,7,79) is coarser than 7 by Lemma 2.6.

3. MAIN RESULTS

In this section, we discuss the perfect images of u-spaces by u-bases and satu-
rated sets-topologies. The following result is a technical lemma.

Lemma 3.1. Let (X, 7) be a p-space and [ : (X,7) — (Y,U) a perfect mapping.
Then there is a p-base |, ., Tn for (X, T) satisfying the following conditions:

(i) for each n € N, let S, be the saturated sets-topology on (f,Tn,70), then
T0 CSp CSpg1 C 75

(ii) for each n € N, f:(X,S,) — (Y,U,) is a perfect mapping, where U,, =
{f(S(0)): 0 € 8,} is a topology of Y ;

(#i1) f: (X,8) = (Y,U) is a perfect mapping, where topologies S and U are
S, and |

generated by bases | U, , respectively.

neN neN

PROOF. By Theorem 2.3, there exists a p-base (J,, ., 7, for (X, 7). Since each p-
space is a paracompact o-space, by Lemma 2.2, there are a submetric p on (X, 7)
and a submetric d on (Y,U) such that f : (X, p) — (Y,d) is a perfect mapping
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and 7; C 7,. By Proposition 2.4, there exists a p-base |, ., 7 for (X,7) such
that 7, C 79 and 7}, C 7, for each n € w. Thus 1) C 7, C 7.

For each n € N, let &, = {S(0) : O € 7,,} and S, the saturated sets-topology
on (f,mn, 7o) with a base Q,, = &, A 9. By 70 C 7, C Tny1 C 7 and Lemma 2.6,
it is obvious that 70 C Q,, C S,, C Sp41 C 7. This completes the proof of (i).

Claim 1. For each n € N and each O € S,,, S(O) € S,..

In fact, let x € S(O) and y = f(z). Then z € O and f~!(y) C S(O). If a point
t € f~l(y), then t € S(O) C O € S,; and there exist O; € 7,,, V; € 79 such that
t € S(0) NV, C O and f1(y) € S(Oy). Let Q. = {S(O)NV;: t € f~1(y)}
Then Q, is a cover of the compact subset f~!(y) in (X, 7). Thus there exists a
finite subfamily Q/ = {S(O;,) NV, : i < m(z)} of Q,, which covers f~1(y). Let
U = (Ni<m(e) Ot:) N (U< Ve:)- Then f~Yy) C Uy € 7, by 79 C 7p; thus
fY(y) C S(U,) € &, C S,. By (i) of Proposition 2.5,

SW:) =5 () 0u)nsSC |J W)

i<m(x) i<m(x)
=[ ) s©O)InCJ Ve U sO)nv)co
i<m(z) i<m(z) i<m(z)

Thus z € S(U,) = S(S(U,)) C S(O). Hence, S(O) = J{S(U) : z € S(O)} €
Sy. Claim 1 is proved.

By Claim 1 and the proof of Corollary 2.1, U,, = {f(S(0O)) : O € S,} is a
topology for Y. We will show that f : (X,S,) — (Y,U,) is a perfect mapping.
For each O € S,,, f(S(0)) € U, and f~1(f(S(0))) = S(O) € S, by Claim 1. It
follows from Lemma 2.6 that f: (X,S,) — (Y,U,) is continuous and closed. For
each y € Y, f~!(y) is compact in 7, thus it is compact in S,, because S,, C 7. In
a word, f:(X,S,) = (Y,U,) is a perfect mapping. This completes the proof of
(ii).

It is obvious that the family | J,,. Sn is closed under finite intersections. Thus
Unen Sn is a base for some topology S of X. Let £ = {S(O) : O € 7} and S*
the saturated sets-topology on (f, 7, 79) with a base @ = £ A 7. Then §* C 7 by
Lemma 2.6.

Claim 2. S =85

It is easy to see that S C S§*, because &, C £ and Q,, C Q for each n € N. To
prove §* C S, it is enough to prove £ C S. Let O € 7, z € S(0O) and y = f(x).
Then z € f~'(y) € S(O) € € C 7. If a point t € f~1(y), since J,enTn is a
base of 7, there are i(t) € N and O; € 7;4) with t € Oy C S(O). Then {O; :
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t € f~1(y)} is an open cover of the compact subset f~!(y) in (X, 7), and there
exists a finite subfamily {Oy, : j < m(x)} covering f~!(y). Let U, = Uj<ma) Ot
and m = max;<,,{i(t;)}. Then f~!(y) C U, € 7, by each 7; C 7i41. Thus
x e SWU;) €&y C Sy and S(U,) C U, C S(0). Since |, . Sn is a base of S,
S§* € S. Claim 2 is proved.

By Claim 2 and Lemma 2.6, if O € S, then S(O) € S.

neN

Claim 3. U =U*, where U* = {f(S(0)) : O € §*}.

In fact, if U € U, then f~1(U) € 7. Thus f~1(U) = S(f~*(U)) € £ C §*, and
U= f(S(f~'(U))) € U*. Hence, U C U*.

On the other hand, let f(S(0)) € U* with some O € S*. It follows from
§* C 7 that S(O) € §*, and X \ S(O) is closed in (X, 7). Thus f(X \ S(0)) is
closed in (Y,U). By (iv) of Proposition 2.5, f(X \ S(0)) =Y \ f(S(O)). Then
Y\ f(S(0)) is closed in (Y,U), i.e., f(S(O)) € U. Hence, U* C U. Claim 3 is
proved.

Claim 4. |J,,cyU, is a base of U.

Let U € Y. Then U = f(S(O)) with some O € §* by Claim 3. For every
y € U, there is an z € S(O) with f(z) = y, then f~!(y) C S(O) € §*. By
Claim 2, the family (J,,cy Sy is a base of S*. If a point t € f~'(y), there exists
O; € S, for some n € N with t € O; € S(O). Let O = {0, : t € f~(y)}. Then
O ={0;:te f~(y)} is an open cover of the compact subset f~1(y) in (X, 7),
and there is a finite subfamily O’ of O covering f~*(y). Let U, = UO’. Then
f~(y) c U, c S(O), and by each S,, C S41, Up € S, for some m € N. Thus
[~ (y) c S(U,) and f(S(Uz)) € Upm C UpenUn- Therefore, y € f(S(U,)) C

f(S(0)) = U. Hence, J,,cy Uy is a base of U. Claim 4 is proved.

Next, we prove that f: (X,S8) — (Y,U) is a perfect mapping. For each U € U,
U = f(S(0)) for some O € S* by Claim 3; and f~1(U) = S(O) € S*. Thus
f(X,8) = (Y,U) is continuous. Let W € S. By Claims 2, 3 and Lemma 2.6,
S(W) e Sand f(S(W)) € U. It follows from Lemma 2.6 that f : (X,S) — (Y,U)
is a closed mapping. For every y € Y, f~!(y) is compact in (X, 7). Since S C 7,
f~1(y) is compact in (X,S). In a word, f: (X,S) — (Y,U) is a perfect mapping.
This completes the proof of (iii). O

The p-base |J,,¢,, 7 for (X, 7) in Lemma 3.1 is called a special ji-base on (f, 7).
The following theorem gives a partial answer to Nagami’s problem.
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Theorem 3.2. Let f : (X, 7) = (Y,U) be a perfect mapping and (X,7) a pu-space
with a special p-base |J,c,, 7 on (f,7). Then (Y,U) is a p-space, if S(O) € 1,
for each n € N and each O € T,.

PROOF. For the simplicity of the proof, we use notation in the proof of Lemma
3.1. Tt is easy to check that for each n € N, §,, C 7, if and only if S(O) € 7, for
each O € 7,. Let U7 = {f(S(0)) : O € 7,}. By the proof of Corollary 2.1, U is
a topology for Y. Let Uj = {f(S(0)) : O € 7,}.

Claim 5. 73 =Uj CU, CU] CU}, , CU for each n € N.

In fact, Uj C Uy, by 7, C 79 C S,,. By Lemma 2.6, U, CU] CUT,, CU. Let
f(S(0)) € U with some O € 7,. Since f : (X, p) = (Y,d) is a perfect mapping,
it follows from (iii) of Lemma 2.6 that f(S(O)) € 74. Then U C 74. On the other
hand, if V € 74, then f~3(V) € 7,, and V = f(f~1(V)) = FIS(f~H V)] € Y.
Thus 74 C Y. Claim 5 is proved.

Claim 6. (Y,U]) is a paracompact F,-metrizable space.

For each O € 7,, f~1(f(S(0))) = S(O) € S, C 7, and f(S(0)) € U’.
Then f : (X,7,) — (Y,U]) is continuous and closed by Lemma 2.6. For each
y €Y, f~Y(y) is compact in 7, thus it is compact in 7,,. This shows that f :
(X, m) — (Y UT) is a perfect mapping. Since (X, 7,) is paracompact, (Y,UT)
is also paracompact. By (iii) of the proof of Proposition 2.4, let X = (J;cy Xni,
where each X,,; is a 74-closed set, and each 7,|x,, = 7o|x,,- Let Yni = f(Xni).
It is obvious that ¥ = UieN Y,i. Since each X,; is 7{-closed, X,; is 7,-closed
by 1) C 7,. So Y,; is 74-closed, and Y,,; is U] -closed by 74 C U]. Since X,;
is mp-closed, flx,, : (Xni,Tnlx,;) = (Yni,Ul|y,,) is a perfect mapping. Since
Tolx,; = 7olx,; and (X, 79) is metrizable, (X, 7n|x,,) and (Yo, Ul |y,,) are
metrizable subspaces. Claim 6 is proved.

Next, we show that (Y,U) is a p-space. For each n € N, let V,, = (Y,U),
and id,, : (Y,U) — Y, be the identity mapping. Then Y,, is a paracompact
F,-metrizable space by Claim 6; and id,, is continuous by Claim 5. If a subset
A CY is closed in (Y,U) and a point y € Y \ A, by Claims 4 in the proof of
Lemma 3.1 and 5, there are n € N and U € U such that y € U C Y \ A4, thus
cly, (A) CY\U, and y & cly, (4) = cly, (id,(A)). This shows the family {id,, }nen
of continuous mappings separates points from closed sets in (Y,U). A mapping
g: (Y, U) = [],en Yn is defined by g(y) = (id,(y))nen. By the diagonal theorem
[4, Theorem 2.3.20], the mapping ¢ is an embedding mapping. Hence, (Y,U) is a
p-space. O
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