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Abstract

A space X is called a kR-space, if X is Tychonoff and the necessary and sufficient condition for a real-
valued function f on X to be continuous is that the restriction of f to each compact subset is continuous.
In this paper, we mainly discuss the kR-property in the free topological groups, and generalize some well-
known results of K. Yamada.
c⃝ 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Recall that X is called a k-space, if the necessary and sufficient condition for a subset A
of X to be closed is that A ∩ C is closed for every compact subset C . It is well-known that
the k-property which generalizes metrizability has been studied intensively by topologists and
analysts. A space X is called a kR-space, if X is Tychonoff and the necessary and sufficient
condition for a real-valued function f on X to be continuous is that the restriction of f to each
compact subset is continuous. Clearly every Tychonoff k-space is a kR-space. The converse is
false. Indeed, for any a non-measurable cardinal κ the power Rκ is a kR-space but not a k-space,
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see [17, Theorem 5.6] and [11, Problem 7.J(b)]. The kR-property has been widely used in the
study of topology, analysis and category, see [3–6,12,13,16].

The results of our research will be presented in two separate papers. In the paper [15],
we mainly extend some well-known results in k-spaces to kR-spaces, and then seek some
applications in the study of free Abelian topological groups. In the current paper, we shall detect
the kR-property in free topological groups and extend some results of K. Yamada.

The paper is organized as follows. In Section 2, we introduce the necessary notation and
terminologies which are used for the rest of the paper. In Section 3, we investigate the kR-property
in free topological groups, and generalize some results of K. Yamada. In Section 4, we pose
some interesting questions about kR-spaces in the class of free topological groups which are still
unknown to us.

2. Preliminaries

In this section, we introduce the necessary notation and terminologies. Throughout this paper,
all topological spaces are assumed to be Tychonoff, unless otherwise is explicitly stated. First of
all, let N be the set of all positive integers and ω the first infinite ordinal. For a space X , we always
denote the set of all the non-isolated points by NI(X ). For undefined notation and terminologies,
the reader may refer to [2,8,9] and [14].

Let X be a topological space and A ⊆ X be a subset of X . The closure of A in X is denoted
by A. Moreover, A is called bounded if every continuous real-valued function f defined on A
is bounded. The space X is called a k-space provided that a subset C ⊆ X is closed in X if
C ∩ K is closed in K for each compact subset K of X . A space X is called a kR-space, if X
is Tychonoff and the necessary and sufficient condition for a real-valued function f on X to
be continuous is that the restriction of f to each compact subset is continuous. Note that every
Tychonoff k-space is a kR-space. A subset P of X is called a sequential neighborhood of x ∈ X ,
if each sequence converging to x is eventually in P . A subset U of X is called sequentially open
if U is a sequential neighborhood of each of its points. A subset F of X is called sequentially
closed if X \ F is sequentially open. The space X is called a sequential space if each sequentially
open subset of X is open. The space X is said to be Fréchet–Urysohn if, for each x ∈ A ⊂ X ,
there exists a sequence {xn} such that {xn} converges to x and {xn : n ∈ N} ⊂ A.

Definition 2.1 ([3]). Let X be a topological space.
• A subset U of X is called R-open if for each point x ∈ U there is a continuous function

f : X → [0, 1] such that f (x) = 1 and f (X \ U ) ⊂ {0}. It is obvious that each R-open set is
open. The converse is true for the open subsets of Tychonoff spaces.

• A subset U of X is called a functional neighborhood of a set A ⊂ X if there is a continuous
function f : X → [0, 1] such that f (A) ⊂ {1} and f (X \ U ) ⊂ {0}. If X is normal, then each
neighborhood of a closed subset A ⊂ X is functional.

Definition 2.2. Let λ be a cardinal. An indexed family {Xα}α∈λ of subsets of a topological space
X is called

• point-countable if for any point x ∈ X the set {α ∈ λ : x ∈ Xα} is countable;
• compact-countable if for any compact subset K in X the set {α ∈ λ : K ∩ Xα ̸= ∅} is

countable;
• locally finite if any point x ∈ X has a neighborhood Ox ⊂ X such that the set {α ∈ λ :

Ox ∩ Xα ̸= ∅} is finite;
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• compact-finite in X if for each compact subset K ⊂ X the set {α ∈ λ : K ∩ Xα ̸= ∅} is
finite;

• strongly compact-finite [3] in X if each set Xα has an R-open neighborhood Uα ⊂ X such
that the family {Uα}α∈λ is compact-finite;

• strictly compact-finite [3] in X if each set Xα has a functional neighborhood Uα ⊂ X such
that the family {Uα}α∈λ is compact-finite.

Definition 2.3 ([3]). Let X be a topological space and λ be a cardinal. An indexed family {Fα}α∈λ

of subsets of a topological space X is called a fan (more precisely, a λ-fan) in X if this family
is compact-finite but not locally finite in X . A fan {Fα}α∈λ is called strong (resp. strict) if each
set Fα has a R-open neighborhood (resp. functional neighborhood) Uα ⊂ X such that the family
{Uα}α∈λ is compact-finite in X .

If all the sets Fα of a λ-fan {Fα}α∈λ belong to some fixed family F of subsets of X , then the
fan will be called an F λ-fan. In particular, if each Fα is closed in X , then the fan will be called
a Cldλ-fan.

Clearly, we have the following implications:

strict fan ⇒ strong fan ⇒ fan.

Let P be a family of subsets of a space X . Then, P is called a k-network if for every
compact subset K of X and an arbitrary open set U containing K in X there is a finite subfamily
P ′

⊆ P such that K ⊆
⋃

P ′
⊆ U . Recall that a space X is an ℵ-space (resp. ℵ0-space) if X

has a σ -locally finite (resp. countable) k-network. Recall that a space X is said to be Lašnev if it
is the continuous closed image of some metric space.

Definition 2.4 ([7]). A topological space X is a stratifiable space if for each open subset U in
X , one can assign a sequence {Un}

∞

n=1 of open subsets of X such that
(a) Un ⊂ U ;
(b)

⋃
∞

n=1Un = U ;

(c) Un ⊂ Vn whenever U ⊂ V .

Note: Each Lašnev space is stratifiable [9].
Let X be a non-empty space. Throughout this paper, X−1

= {x−1
: x ∈ X}, which is just

a copy of X . For every n ∈ N, Fn(X ) denotes the subspace of F(X ) that consists of all the
words of reduced length at most n with respect to the free basis X . Let e be the neutral element
of F(X ), that is, the empty word. For every n ∈ N, an element x1x2 · · · xn is also called a
form for (x1, x2, . . . , xn) ∈ (X

⨁
X−1⨁

{e})n . The word g is called reduced if it does not
contain e or any pair of consecutive symbol of the form xx−1. It follows that if the word g is
reduced and non-empty, then it is different from the neutral element e of F(X ). In particular,
each element g ∈ F(X ) distinct from the neutral element can be uniquely written in the form
g = xϵ1

1 xϵ2
2 · · · xϵn

n , where n ≥ 1, ϵ1 ∈ {−1, 1}, xi ∈ X , and the support of g = xϵ1
1 xϵ2

2 · · · xϵn
n is

defined as supp(g) = {x1, . . . , xn}. Given a subset K of F(X ), we put supp(K ) =
⋃

g∈K supp(g).
For every n ∈ N, let

in : (X
⨁

X−1
⨁

{e})n
→ Fn(X )

be the natural mapping defined by

in(x1, x2, . . . , xn) = x1x2 · · · xn

for each (x1, x2, . . . , xn) ∈ (X
⨁

−X
⨁

{0})n .
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3. The kR -property in free topological groups

In this section, we investigate the kR-property in free topological groups, and generalize some
results of K. Yamada. Recently, T. Banakh in [3] proved that F(X ) is a k-space if F(X ) is a
kR-space for a Lašnev space X . Indeed, he obtained this result in the class of weaker spaces.
However, he did not discuss the following question:

Question 3.1. Let X be a space. For some n ∈ ω, if Fn(X ) is a kR-space, is Fn(X ) a k-space?

First, we present Theorem 3.3, which complements the result of T. Banakh.

Lemma 3.2. Let F(X ) be a kR-space. If each Fn(X ) is a normal k-space, then F(X ) is a k-space.

Proof. It is well-known that each compact subset of F(X ) is contained in some Fn(X )
[2, Corollary 7.4.4]. Hence it follows from [12, Lemma 2] that F(X ) is a k-space. □

Theorem 3.3. Let X be a paracompact σ -space. Then F(X ) is a kR-space and each Fn(X ) is a
k-space if and only if F(X ) is a k-space.

Proof. Since X is a paracompact σ -space, it follows from [2, Theorem 7.6.7] that F(X ) is also
a paracompact σ -space, hence each Fn(X ) is normal. Now apply Lemma 3.2 to conclude the
proof. □

Next, we shall prove that for an arbitrary metrizable space X , the kR-property of F8(X ) implies
that F(X ) is a k-space, Theorem 3.6. We first prove two technical propositions. To prove them,
we need the description of a neighborhood base of e in F(X ) obtained in [18]. Let

H0(X )

=

{
h = xε1

1 xε2
2 · · · xε2n

2n ∈ F(X ) :

2n∑
i=1

εi = 0, xi ∈ X for i ∈ {1, 2, . . . , n}, n ∈ N

}
.

Obviously, the subset H0(X ) is a clopen normal subgroup of F(X ). It is easy to see that each
h ∈ H0(X ) can be represented as

h = g1xε1
1 y−ε1

1 g−1
1 g2xε2

2 y−ε1
2 g−1

2 · · · gn xεn
n y−ε1

n g−1
n ,

for some n ∈ N, where xi , yi ∈ X , εi = ±1 and gi ∈ F(X ) for i ∈ {1, 2, . . . , n}.
Let P(X ) be the set of all continuous pseudometrics on a space X . Then take an arbitrary
r = {ρg : g ∈ F(X )} ∈ P(X )F(X ). Let

pr (h) = inf

{
n∑

i=1

ρgi (xi , yi ) : h = g1xε1
1 y−ε1

1 g−1
1 g2xε2

2 y−ε1
2 g−1

2 · · · gn xεn
n y−ε1

n g−1
n , n ∈ N

}
for each h ∈ H0(X ). In [18], Uspenskii proved that

(a) ρr is continuous on H0(X ) and
(b) {{h ∈ H0(X ) : pr (h) < δ} : r ∈ P(X )F(X ), δ > 0} is a neighborhood base at e in F(X ).

Moreover, pr (e) = 0 for each r ∈ P(X )F(X ).

Proposition 3.4. For a stratifiable k-space X, if F8(X ) is a kR-space, then X is separable or
discrete.
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Proof. Assume to the contrary that X is neither separable nor discrete. Then X contains a closed
subspace Y = C

⨁
D, where C = {xn : n ∈ ω} ∪ {x} is a convergent sequence with its limit

point {x} and D = {dα : α ∈ ω1} is a discrete closed subset of X . Since D is a discrete closed
subset of X , we choose a discrete family {Oα}α∈ω1 of open subsets such that dα ∈ Oα for each
α ∈ ω1. We may assume that xn ̸= xm for arbitrary n ̸= m and C ∩

⋃
α∈ω1

Oα = ∅. Since X
is stratifiable and Y is closed in X , it follows from [18] that F(Y ) is homeomorphic to a closed
subgroup of F(X ). Hence F8(Y ) is closed subspace of F8(X ). Next we shall prove that F8(X )
contains a strict Cldω-fan, a contradiction. Indeed, since F8(X ) is normal, it suffices to construct
a strong Cldω-fan in F8(X ).

For each α ∈ ω1 choose a function fα : ω1 → ω such that fα|α : α → ω is a bijection. For
each n ∈ ω, let

Fn = {d−1
β x−1xmdβdαxn x−1d−1

α : fα(β) = n, α, β ∈ ω1, m ≤ n}.

We claim that the family {Fn : n ∈ ω} is a strong Cldω-fan in F8(X ). We divide the proof into
the following three statements.

(1) For each n ∈ ω, the set Fn is closed in F8(X ).
Fix an arbitrary n ∈ ω. It suffices to prove that the set Fn is closed in F8(Y ). Let Z = suppFn .

It is obvious that Z is a closed discrete subspace of Y . It follows from [18] that F(Z ) is
topologically isomorphic to a closed subgroup of F(Y ), and thus F8(Z ) is a closed subspace
of F8(Y ). Since F(Z ) is discrete and Fn ⊂ F8(Z ), the set Fn is closed in F8(Y ) (and thus closed
in F(X )).

(2) The family {Fn : n ∈ ω} is strong compact-finite in F8(X ).
By induction, choose two families of open neighborhoods {Wn}n∈ω and {Vn}n∈ω in X that

satisfy the following conditions:
(a) for each n ∈ ω, xn ∈ Wn;
(b) for each n ∈ ω, x ∈ Vn and Vn+1 ⊂ Vn;
(c) for each n ∈ ω, we have Wn ∩ (C ∪ D) = {xn}, Vn ∩ (D ∪ Wn) = ∅ and Vn ∩ C ⊂ Cn ,

where Cn = {xm : m > n} ∪ {x};
(d) V1 ∩

⋃
α∈ω1

Oα = ∅ and Wn ∩
⋃

α∈ω1
Oα = ∅ for each n ∈ ω.

For each n ∈ ω, let

Un =

⋃
{O−1

β V −1
n Wm Oβ OαWn V −1

n O−1
α : fα(β) = n, α, β ∈ ω1, m ≤ n}.

Obviously, each Un is contained in F8(X ) \ F7(X ), and since F8(X ) \ F7(X ) is open in F8(X ),
it follows from [2, Corollary 7.1.19] that each Un is open in F8(X ). We claim that the family
{Un : n ∈ ω} is compact-finite in F8(X ). If not, then there exist a compact subset K in F8(X )
and an increasing sequence {nk} such that K ∩ Unk ̸= ∅ for each k ∈ ω. Since X is stratifiable,
F(X ) is paracompact, hence the closure of the set supp(K ) is compact in X . However, for each
k ∈ ω, since K ∩ Unk ̸= ∅, there exist mk ∈ ω, αk ∈ ω1 and βk ∈ ω1 such that fαk (βk) = nk and

K ∩ O−1
βk

V −1
nk

Wmk Oβk Oαk Wnk V −1
nk

O−1
αk

̸= ∅,

hence supp(K ) ∩ Oαk ̸= ∅ and supp(K ) ∩ Oβk ̸= ∅. Therefore, the set supp(K ) intersects each
element of the family {Oαk , Oβk : k ∈ ω}. Since the set {nk : k ∈ ω} is infinite and fαk (βk) = nk

for each k ∈ ω, the set {αk, βk : k ∈ ω} is infinite. Then supp(K ) intersects infinitely many Oα’s,
which is a contradiction with the compactness of supp(K ). Therefore, the family {Un : n ∈ ω} is
compact-finite in F8(X ). Therefore, the family {Fn : n ∈ ω} is strong compact-finite in F8(X ).

(3) The family {Fn : n ∈ ω} is not locally finite at the point e in F8(Y ) (and thus not locally
finite in F8(X )).
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Indeed, it suffices to prove that e ∈
⋃

n∈ω Fn \
⋃

n∈ω Fn in F8(Y ). For any δ > 0 and
r = {ρg : g ∈ F(Y )}, we shall prove that

{h ∈ F8(Y ) : pr (h) < δ} ∩

⋃
n∈ω

Fn ̸= ∅.

Since the sequence {xn} converges to x and ρdα and ρd−1
α

are continuous pseudometrics on
Y for each α ∈ ω1, there is n(α) ∈ ω such that ρdα (xn, x) < δ

2 and ρd−1
α

(xn, x) < δ
2

for each n ≥ n(α). Therefore, there are n0 ∈ ω and an uncountable set A ⊂ ω1 such that
ρdα (xn, x) < δ

2 and ρd−1
α

(xn, x) < δ
2 for each n ≥ n0 and α ∈ A. Choose α ∈ A that has

infinitely many predecessors in A. Since fα(α ∩ A) is an infinite set, there exist m > n0 and
β ∈ α ∩ A such that fα(β) = m. Then the word

g = d−1
β x−1xn0dβdαx fα (β)x−1d−1

α ∈ F fα (β) = Fm .

Furthermore, we have

pr (g) = pr (d−1
β x−1xn0dβdαx fα (β)x−1d−1

α ) ≤ ρd−1
β

(xn0 , x) + ρdα (xm, x) <
δ

2
+

δ

2
= δ.

Hence e ∈
⋃

n∈ω Fn . Hence the family {Fn : n ∈ ω} is not locally finite at the point e in
F8(Y ). □

Proposition 3.5. For a metrizable space X, if F8(X ) is a kR-space, then X is locally compact.

Proof. Assume to the contrary that X is not locally compact. Then there exists a closed hedgehog
subspace

J = {x} ∪

(⋃
n∈ω

Xn

)
∪ {zn : n ∈ ω}

such that
(1) Xn = {yn} ∪ {xn, j : j ∈ ω} is a closed discrete subset of J for each n ∈ ω;
(2) {zn : n ∈ ω} is a closed discrete subset of J ; and
(3) {{x} ∪

⋃
n≥k Xn : k ∈ ω} is a neighborhood base of x in J .

By Proposition 3.4, X is separable. Next we shall prove that F8(X ) contains a strict Cldω-
fan, which is a contradiction with F8(X ) being a kR-space. Since F8(X ) is an ℵ0-space by
[1, Theorem 4.1], the subspace F8(X ) is normal, hence it suffices to prove that F8(X ) contains
a strong Cldω-fan. Furthermore, it follows from [3, Proposition 2.9.2] that each compact-finite
family of subsets of X is strongly compact-finite, hence it suffices to prove that F8(X ) contains
a Cldω-fan. For any n, j ∈ ω, put

En, j = {z−1
n y−1

j xzn xn, j }.

It is obvious that each En, j is closed. Furthermore, it follows from the proof of [20, Proposition
2.1] that x ∈

⋃
n, j∈ω En, j \

⋃
n, j∈ω En, j , and thus the family {En, j : n, j ∈ ω} is not locally finite

at the point x . Next we claim that the family {En, j : n, j ∈ ω} is compact-finite.
If not, then there exist a compact subset K and two sequences {ni } and { ji } such that

K ∩ Eni , ji ̸= ∅. The closure of the set supp(K ) is compact since F8(X ) is paracompact. Since
the family {En, j : n, j ∈ ω} is pairwise disjoint, one of the sequences {ni } and { ji } is an infinite
set. If {ni } is an infinite set, then the closed discrete set {zni : i ∈ ω} is contained in supp(K ),
which is a contradiction since supp(K ) is compact. If { ji } is an infinite set and {ni } is a finite set,
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then there exists N ∈ ω such that {xni , ji : i ∈ N} ⊂
⋃

j<N X j . Obviously, the closed discrete set
{xni , ji : i ∈ N} is an infinite set and contained in supp(K ), which is a contradiction. □

Now we can prove one of the main theorems in this paper.

Theorem 3.6. For a metrizable space X, the following are equivalent:

(1) F(X ) is a k-space;
(2) F8(X ) is a k-space;
(3) F8(X ) is a kR-space;
(4) the space X is locally compact separable or discrete.

Proof. The equivalence of (1) and (4) was proved in [20]. It is obvious that (2) ⇒ (3). By
Propositions 3.4 and 3.5, we have (3) ⇒ (4). □

By Theorem 3.6, it is natural to ask the following question:

Question 3.7. Let X be a metrizable space. If Fn(X ) is a kR-space for some n ∈ {4, 5, 6, 7},
then is F8(X ) a kR-space?

Note For each n ∈ {2, 3}, the answer to the above question is negative. Indeed, for an arbitrary
metrizable space X , since i2 is a closed mapping, F2(X ) is a Fréchet–Urysohn space (and thus a
k-space). For n = 3, we have the following Theorem 3.9. However, for each n ∈ {4, 5, 6, 7}, the
above question is still unknown to us.

Proposition 3.8. For a metrizable space X, if F3(X ) is a kR-space, then X is locally compact
or NI(X) is compact.

Proof. Assume to the contrary that neither X is locally compact nor the set of all non-isolated
points of X is compact. Then X contains a closed subspace

Y = {x} ∪

⋃
n∈ω

Xn ⊕

⨁
n∈ω

Cn,

where for every n ∈ ω

Xn = {xn,i : i ∈ ω} is a closed discrete subset of X ,
{{x} ∪

⋃
m≥n Xm : n ∈ ω} is a neighborhood base at x in Y ,

Cn = {cn,i : i ∈ ω} ∪ {cn} is a convergent sequence with its limit cn , and
Cn is contained in the open subset Un of X such that the family {Un : n ∈ ω} is discrete in X

and ({x} ∪
⋃

m∈ω Xm) ∩
⋃

m∈ωUm = ∅.
In order to obtain a contradiction, we shall construct a strict Cldω-fan in F3(X ). For any

n, i ∈ ω, choose an open neighborhood O i
n of the point xn,i in X such that the family {O i

n : i ∈ ω}

is discrete, O i
n ∩

⋃
m∈ωUm = ∅ and O i

n ∩ ({x} ∪
⋃

n∈ω Xn) = {xn,i }.
For each n, i ∈ ω, let

E(n, i) = {gn,i = cnc−1
n,i xn,i }

and

U (n, i) = V i
n (W i

n)−1 O i
n,

where V i
n and W i

n are two arbitrary open neighborhoods of cn and cn,i in X respectively such
that V i

n ∪ W i
n ⊂ Un and V i

n ∩ W i
n = ∅. Obviously, each E(n, i) is closed and it follows from
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[2, Corollary 7.1.19] that U (n, i) is an open neighborhood of E(n, i) for each n, i ∈ ω. In [20],
the author has proved that x ∈

⋃
n,i E(n, i) \

⋃
n,i E(n, i), hence the family {E(n, i) : n, i ∈ ω}

is not locally finite in F3(X ). To complete the proof, it suffices to prove that the family
{U (n, i) : n, i ∈ ω} is compact-finite in F3(X ). If not, then there exists a compact subset K and
two sequences {n j } and {i j } such that K ∩U (n j , i j ) ̸= ∅. Similar to the proof of Proposition 3.5,
we can now obtain a contradiction. □

Theorem 3.9. For a metrizable space X, the following are equivalent:

(1) F3(X ) is a k-space;
(2) F3(X ) is a kR-space;
(3) the space X is locally compact or NI(X) is compact.

Proof. The equivalence of (1) and (3) was proved in [20]. The implication of (1) ⇒ (2) is
obvious. By Proposition 3.8, we have (2) ⇒ (3). □

The following theorem was proved in [15].

Theorem 3.10. [15] Let X be a stratifiable space such that X2 is a kR-space. If X satisfies one of
the following conditions, then either X is metrizable or X is the topological sum of kω-subspaces.

(1) X is a k-space with a compact-countable k-network;
(2) X is a Fréchet–Urysohn space with a point-countable k-network.

Since F2(X ) contains a closed copy of X × X , it follows from Theorem 3.10 that we have the
following theorem.

Theorem 3.11. Let X be a stratifiable k-space with a compact-countable k-network. Then the
following are equivalent:

(1) F2(X ) is a k-space;
(2) F2(X ) is a kR-space;
(3) either X is metrizable or X is the topological sum of kω-subspaces.

The following proposition shows that we cannot replace “F3(X )” with “F4(X )” in Theo-
rem 3.9. First, we recall a special space. Let

M3 =

⨁
{Cα : α < ω1},

where Cα = {c(α, n) : n ∈ N} ∪ {cα} with c(α, n) → cα as n → ∞ for each α ∈ ω1.

Proposition 3.12. The subspace F4(M3) is not a kR-space.

Proof. It suffices to prove that F4(M3) contains a strict Cldω-fan. It follows from [10, Theorem
20.2] that we can find two families A = {Aα : α ∈ ω1} and B = {Bα : α ∈ ω1} of infinite
subsets of ω such that

(a) Aα ∩ Bβ is finite for all α, β ∈ ω1;
(b) for no A ⊂ ω, all the sets Aα \ A and Bα ∩ A, α ∈ ω1 are finite.
For each n ∈ ω, put

Xn = {c(α, n)c−1
α c(β, n)c−1

β : n ∈ Aα ∩ Bβ, α, β ∈ ω1}.
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It suffices to prove the following three statements.
(1) The family {Xn} is strictly compact-finite in F4(M3).
Since M3 is a Lašnev space, it follows from [2, Theorem 7.6.7] that F(M3) is also a

paracompact σ -space, hence F4(M3) is paracompact (and thus normal). Hence it suffices to
prove that the family {Xn} is strongly compact-finite in F4(M3). For each α ∈ ω1 and n ∈ ω, let
Cn

α = Cα \ {c(α, m) : m ≤ n}, and put

Un = {c(α, n)x−1c(β, n)y−1
: n ∈ Aα ∩ Bβ, α, β ∈ ω1, x ∈ Cn

α, y ∈ Cn
β}.

Obviously, each Xn ⊂ F4(M3) \ F3(M3). Since F4(M3) \ F3(M3) is open in F4(M3), it follows
from [2, Corollary 7.1.19] that each Un is open in F4(M3). We claim that the family {Un}

is compact-finite in F4(M3). If not, then there exist a compact subset K in F4(M3) and a
subsequence {nk} of ω such that K ∩ Unk ̸= ∅ for each k ∈ ω. For each k ∈ ω, choose an
arbitrary point

zk = c(αk, nk)x−1
k c(βk, nk)y−1

k ∈ K ∩ Unk ,

where xk ∈ Cnk
αk and yk ∈ Cnk

βk
. Since F4(M3) is paracompact, it follows from [1] that the closure

of the set supp(K ) is compact in M3. Therefore, there exists N ∈ ω such that

supp(K ) ∩

⋃
{Cα : α ∈ ω1 \ {αi ∈ ω1 : i ≤ N }} = ∅,

that is, supp(K ) ⊂
⋃

α∈{γi ∈ω1:i≤N }
Cα . Since each zk ∈ K , there exists

αk, βk ∈ {αi ∈ ω1 : i ≤ N }

such that Aαk ∩ Bβk is an infinite set, which is a contradiction since Aα ∩ Bβ is finite for all
α, β < ω1.

(2) Each Xn is closed in F4(M3).
Fix an arbitrary n ∈ ω. We shall prove that Xn is closed in F4(M3). Let Z = supp(Xn). Then

Z is a closed discrete subset of M3. Since M3 is metrizable, it follows from [18] that F(Z ) is
homeomorphic to a closed subgroup of F(M3), hence F4(Z ) is a closed subspace of F4(M3).
Since F(Z ) is discrete and Xn ⊂ F4(Z ), the set Xn is closed in F4(Z ) (and thus closed in
F4(M3)).

(3) The family {Xn} is not locally finite at the point e in F4(M3).
Indeed, it suffices to prove that e ∈

⋃
n∈ω Xn \

⋃
n∈ω Xn . For any δ > 0 and r = {ρg : g ∈

F(M3)}, we shall prove that

{h ∈ F4(M3) : pr (h) < δ} ∩

⋃
n∈ω

Xn ̸= ∅

since ρe is continuous, we can choose a function f : ω1 → ω such that ρe(c(α, n), cα) < δ
2

for any α ∈ ω1 and n ≥ f (α). For each α < ω1, put A′
α = {n ∈ Aα : n ≥ f (α)} and

B ′
α = {n ∈ Bα : n ≥ f (α)}. By the condition (b) of the families A and B, it is easy to see that

there exist α, β ∈ ω1 such that A′
α ∩ B ′

β ̸= ∅. So, choose n ∈ A′
α ∩ B ′

β . Then ρe(c(α, n), cα) < δ
2

and ρe(c(β, n), cβ) < δ
2 . Let z = c(α, n)c−1

α c(β, n)c−1
β . Then z ∈ Xn and

pr (z) ≤ ρe(c(α, n), cα) + ρe(c(β, n), cβ) <
δ

2
+

δ

2
= δ,

hence z ∈ {h ∈ F4(M3) : pr (h) < δ} ∩
⋃

n∈ω Xn . □

Theorem 3.13. Let X be a metrizable space. If F4(X ) is a kR-space, then NI(X) is separable.
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Proof. If not, then X contains a closed copy of M3. Use the same notation as in Proposition 3.12.
Since X is metrizable, there exists a discrete family {Uα}α∈ω1 of open subsets in X such that
Cα ⊂ Uα for each α ∈ ω1. For arbitrary (α, n) ∈ ω1 × ω, choose open neighborhoods Vα,n and
Wα,n of the point c(α, n) and cα in X respectively such that Vα,n∩Wα,n = ∅ and Vα,n∪Wα,n ⊂ Uα .
For each n ∈ N, put

On =

⋃
{Vα,n W −1

α,n Vβ,n W −1
β,n : n ∈ Aα ∩ Bβ, α, β ∈ ω1}.

Similar to the proof of Proposition 3.12, we can prove that the family {On}n∈ω of open subsets
is compact-finite in F4(X ), hence the family {Xn}n∈ω is a strict Cldω-fan in F4(X ), which is a
contradiction. □

4. Open questions

In this section, we pose some interesting questions about kR-spaces in the class of free
topological groups, which are still unknown to us.

By Theorems 3.6, 3.9 and 3.11, it is natural to pose the following question.

Question 4.1. Let X be a metrizable space. For each n ∈ {4, 5, 6, 7}, if Fn(X ) is a kR-space, is
Fn(X ) a k-space?

In [19], Yamada made the following conjecture:
Yamada’s Conjecture: The subspace F4(X ) is Fréchet–Urysohn if the set of all non-isolated

points of a metrizable space X is compact.
We do not even know the answer to the following question.

Question 4.2. Is F4(X ) a kR-space if the set of all non-isolated points of a metrizable space X
is compact?

In particular, we have the following question.

Question 4.3. Let X = C
⨁

D, where C is a non-trivial convergent sequence with its limit
point and D is an uncountable discrete space. Is F4(X ) a kR-space?

In [4], the authors proved that each closed subspace of a stratifiable kR-space is a kR-subspace.
However, the following two questions are still open.

Question 4.4. Is each closed subgroup of a kR-free topological group kR?

Question 4.5. Is each subspace Fn(X ) of a kR-free topological group kR?
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