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Abstract: In this paper, we mainly discuss the class of charming spaces. First, we

show that there exists a charming space such that the Tychonoff product is not a
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1 Introduction

In 1969, Nagami[1] introduced the notion of Σ -spaces, and then the class of Σ -spaces

with the Lindelöf property (i.e., the class of Lindelöf Σ -space) quickly attracted the attention

of some topologists. From then on, the study of Lindelöf Σ -spaces has become an important

part in the functional analysis, topological algebra and descriptive set theory. Tkachuk[2]

described detailedly Lindelöf Σ -spaces and made an overview of the recent progress achieved

in the study of Lindelöf Σ -spaces. Arhangel’skii[3] has proved if the weight of X does not

exceed 2ω, then any remainders of X in a Hausdorff compactification is a Lindelöf Σ -space.

It is natural to ask if we can find a class of spaces P such that each remainder of a Haus-

dorff compactification of arbitrary metrizable space belongs to P. Therefore, Arhangel’skii
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defined charming spaces in [3] and showed the any remainder of paracompact p-space in

a Hausdorff compactification is a charming space. Indeed, Arhangel’skii defined many new

classes of spaces (that is, (i, j)-structured spaces) which have similar structure with the class

of charming spaces, and he said that each of the classes of spaces so defined is worth studying.

Therefore, we mainly discuss some topological properties of (i, j)-structured spaces.

2 Preliminaries

All spaces are Tychonoff unless stated otherwise. Readers may refer to [4]–[5] for nota-

tions and terminology not explicitly given here.

Definition 2.1 Let N be a family of subsets of a space X. Then the family N is a

network of X if every open subset U is the union of some subfamily of N .

Definition 2.2 We say that a space is cosmic if it has a countable network.

Definition 2.3 Let X be a space. We say that X is a Lindelöf p-space if it is the preimage

of a separable metrizable space under a perfect mapping.

Definition 2.4 X is a Lindelöf Σ-space if there exists a space Y which maps continuously

onto X and perfectly onto a second countable space.

That is, a Lindelöf Σ -space is the continuous onto image of some Lindelöf p-space.

Therefore, a Lindelöf p-space is a Lindelöf Σ -space. It is well-known that the class of

Lindelöf Σ -spaces contains the classes of Σ -compact spaces and spaces with a countable

network.

Definition 2.5 [3] Let X be a space. If there exists a Lindelöf Σ-subspace Y such that for

each open neighborhood U of Y in X we have X \U is also a Lindelöf Σ-subspace, then we

say that X is a charming space.

Definition 2.6 [3] Let P and Q be two classes of topological spaces respectively. A space

X will be called (P,Q)-structured if there is a subspace Y of X such that Y ∈ P, and

for each open neighborhood U of Y in X, the subspace X \ U of X belongs to Q. In this

situation, we call Y a (P,Q)-shell of the space X.

Definition 2.7 [3] Let P0 be the class of Σ-compact spaces, P1 be the class of separable

metrizable spaces, P2 be the class of spaces with a countable network, P3 be the class of

Lindelöf p-spaces, P4 be the class of Lindelöf Σ-spaces and P5 be the class of compact

spaces. Choose some i, j ∈ {0, 1, 2, 3, 4, 5}. A space X is called (i, j)-structured if it is

(Pi,Pj)-structured. In particular, a (4, 4)-structured space is called a charming space.
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3 The Properties of (i, j)-structured Spaces

In this section, we discuss some properties of (i, j)-structured spaces.

Proposition 3.1 Each closed subspace of an (i, j)-structured space X is (i, j)-structured,

where i, j ∈ {0, 1, 2, 3, 4, 5}.

Proof. Let X be an (i, j)-structured space, A be a closed subspace of X. Since X is an

(i, j)-structured space, there is a subspace Y such that Y is a (Pi,Pj)-shell of the space

X. Let B = A
∩
Y . We claim that B is a (Pi,Pj)-shell of the space A. Obviously, we have

B ∈ Pi. Now it suffices to show that for each open neighborhood V of B in A, the subspace

A \ V of A belongs to Pj . Indeed, let V be an open neighborhood of B in A. Then there

is an open neighborhood V1 in X such that

V = V1
∩
A, A \ V = A \ V1.

We have

Y \ V1 ⊂ X \A, V1
∩
Y ⊂ V1,

and

(Y \ V1)
∪
(V1

∩
Y ) = Y ⊂ V1

∪
(X \A).

It is easy to see that

A \ V = A \ V1 ⊂ X \ (V1
∪
(X \A)) ∈ Pj .

The following three propositions are easy exercises.

Proposition 3.2 Any image of an (i, j)-structured space under a continuous mapping is

an (i, j)-structured space, where i, j ∈ {0, 2, 4, 5}.

Proposition 3.3 Any preimage of an (i, j)-structured space under a perfect mapping is

an (i, j)-structured space, where i, j ∈ {0, 3, 4, 5}.

Proposition 3.4 For i ∈ {0, 2, 4}, if Xj ∈ Pi for each j ∈ N and X =
∪

j∈N

Xj , then

X ∈ Pi.

Question 3.1 For arbitrary i, j ∈ {1, 3}, is any image of an (i, j)-structured space under

a continuous mapping an (i, j)-structured space?

Question 3.2 For arbitrary i, j ∈ {1, 2}, is any preimage of an (i, j)-structured space

under a perfect mapping an (i, j)-structured space?

Proposition 3.5 Let X be a space and X =
∪
k∈ω

Xk. If each Xk is an (i, j)-structured

space, then X is also an (i, j)-structured space, where i, j ∈ {0, 2, 4}.
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Proof. Fix i, j ∈ {0, 2, 4}. For every k ∈ ω, since Xk is an (i, j)-structured space,

there exists a subspace Yk ⊂ Xk such that Yk is a (Pi,Pj)-shell of the space Xk. Put

Y =
∪
k∈ω

Yk. We claim that Y is a (Pi,Pj)-shell of the space X. Indeed, the space Y

belongs to Pi by Proposition 3.4. Moreover, for each open neighborhood U of Y in X, each

Xk \ (Xk

∩
U) ∈ Pj , hence it follows from Proposition 3.4 that

X \ U = (
∪
k∈ω

Xk) \ U =
∪
k∈ω

(Xk \ U) =
∪
k∈ω

(Xk \Xk

∩
U) ∈ Pj .

Therefore, X is an (i, j)-structured space.

Since the intersection of countably many Lindelöf Σ -subspaces is also Lindelöf Σ , it is

natural to pose the following question.

Question 3.3 Let X be a space and Xk ⊂ X for each k ∈ N. If each Xk is an (i, j)-

structured space, is
∪

k∈N

Xk an (i, j)-structured space, where i, j ∈ {0, 1, 2, 3, 4, 5}?

It is well-known that the product of a countably many Lindelöf Σ -spaces is also a Lindelöf

Σ -space. However, the product of two charming spaces may not be a charming space, see

Example 3.1.

We know that each discrete space X has a Hausdorff one point Lindelöfication which

defined as follows: take an arbitrary point p ̸∈ X and consider the set Y = X
∪
{p}, and

then let all points of X be open and each neighborhood of p be the form U
∪
{p}, where U

is open in X and X \ U is a countable set.

Example 3.1 There exists a charming space X satisfying the following conditions:

(i) X is not a Lindelöf Σ -space;

(ii) The product of X2 is not a charming space.

Proof. Let X = {∞}
∪
D be the one-point Lindelöfication of an uncountable discrete

space, where D is an uncountable discrete space. Tkachuk[2] has proved that X is not a

Lindelöf Σ -space. Obviously, the subspace {∞} is a Lindelöf Σ -space, and for each open

neighborhood V of {∞} in X we have D \ V is Lindelöf, then D \ V is separable and

metrizable. Thus D \ V is a Lindelöf Σ -space. Therefore, X is a charming space.

Now, we shall show thatX2 is not a charming space. Assume thatX2 is a charming space.

Then there exists a Lindelöf Σ -subspace L ⊂ X2 such that, for each open neighborhood U

of L, X2\U is a Lindelöf Σ -subspace. It is easy to see that (∞,∞) ∈ L. Since each compact

subset of X2 is finite, L must be a countable set by Theorem 5 in [2]. Then there exists a

point x0 ∈ D such that ({x0} ×X)
∩
L = ∅ and (X × {x0})

∩
L = ∅. It is easy to see that

((X \ {x0})× (X \ {x0})) is an open neighborhood of L in X2. Put V = X \ {x0}. Then
X2 \ (V × V ) = {(x0, x0)}

∪
({x0} × V )

∪
(V × {x0})

is a Lindelöf Σ -space. Since {x0} × V is closed in X2 \ (V × V ), we see that {x0} × V is a

Lindelöf Σ -space. However, V is homeomorphic to X, which is a contradiction. Therefore,

X2 is not a charming space.
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Remark 3.1 (1) Tkachuk[2] proved that if X is a Lindelöf Σ -space and every compact

subset of X is finite then X is countable. From Example 3.1, we know that we can not

replace “Lindelöf Σ -spaces” by “charming spaces”.

(2) The product of a family of finitely many charming spaces need not be a charming

space.

(3) The space X in Example 3.1 is (i, j)-structured for i, j ∈ {0, 1, 2, 3, 4}. Therefore, the
product of a family of finitely many (i, j)-structured spaces need not be an (i, j)-structured

space.

It is easy to check that X2 in Example 3.1 is a Lindelöf space. Therefore, we have the

following question:

Question 3.4 Is the product of two charming spaces Lindelöf ? In particular, is the prod-

uct of a charming space with a Lindelöf Σ -space a Lindelöf space?

Finally, we discuss a charming space with a Gδ-diagonal.

Theorem 3.1 [2] A Lindelöf Σ-space with a Gδ-diagonal has a countable network.

Proposition 3.6 Let S be the Sorgenfrey line. Then any uncountable subspace of S is

not a Lindelöf Σ-subspace.

Proof. Let Y be an uncountable subspace of S. Assume that Y is a Lindelöf Σ -subspace.

Then L = Y
∪
(−Y ) is also a Lindelöf Σ -subspace of S, hence L2 has a countable network

by Theorem 3.1 since S has a Gδ-diagonal. However, L2 contains a closed, uncountable

and discrete subspace {(x,−x) : x ∈ L}, which is a contradiction since L2 has a countable

network.

Example 3.2 There exists a hereditarily Lindelöf spaceX which is not a charming space.

Proof. Let X be the Sorgenfrey line. Then X is a hereditarily Lindelöf space. Assume

that X is a charming space. Then there exists a subspace Y such that Y is a (P4,P4)-shell

in X. By Proposition 3.6, Y is countable. Let Y = {bn : n ∈ N}. For each n ∈ N, take an

open neighborhood [bn, bn + 2−n) in X. Then

U =
∪

n∈N

[bn, bn + 2−n)

is an open neighborhood of Y in X. Since

m(Y ) ≤
∞∑

n=1
2−n = 1,

we have that X \ U is an uncountable set. Then X \ U is not a Lindelöf Σ -space by

Proposition 3.6, which is a contradiction.

It is natural to ask the following question.

Question 3.5 Does each charming spaceX with aGδ-diagonal have a countable network?

By Theorem 3.1, the following proposition is obvious.
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Proposition 3.7 Each charming space X with a Gδ-diagonal is a (2, 2)-structured space.

The following two results are well-known in the class of Lindelöf Σ -spaces.

Theorem 3.2 [6] Each hereditarily Lindelöf Σ-space has a countable network.

Theorem 3.3 [5] Each Lindelöf Σ-space with a point-countable base is second-countable.

However, the following questions are remain open.

Question 3.6 Is each hereditarily charming space a Lindelöf Σ -space?

Question 3.7 Does each hereditarily charming space have a countable network?

Question 3.8 Is each charming space with a point-countable base metrizable?

4 CL-charming and CO-charming Spaces

In this section, we introduce two classes of charming spaces, and then discuss some

properties of them.

Definition 4.1 A space X is called CL-charming space (resp., CO-charming space) if

there is a closed subspace (resp., compact subspace) Y of X such that Y is a (P4,P4)-shell

in X.

Obviously, each CO-charming space is CL-charming, and each CL-charming is a charming

space. The space X in Example 3.1 is CO-charming. However, there exists a CL-charming

space is not CO-charming space.

Example 4.1 There exists a CL-charming space which is not CO-charming.

Proof. For each n ∈ N, let Xn be the copy of X in Example 3.1. Then it is easy to

see that the topological sum Y =
⊕
n∈N

Xn is a CL-charming space. However, it is not a

CO-charming space.

The following three propositions are easy to check.

Proposition 4.1 Any image of a CO-charming space under a continuous mapping is a

CO-charming space.

Proposition 4.2 Any closed image of a CL-charming space under a continuous mapping

is a CL-charming space.

Proposition 4.3 Any preimage of a CL-charming space (resp., CO-charming space) un-

der a perfect mapping is a CL-charming space (resp., CO-charming space).

However, we do not know the answer of the following question.
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Question 4.1 Is any image of a CL-charming space under a continuous mapping a CL-

charming space?

Theorem 4.1 A hereditarily CL-charming space X is a hereditarily Lindelöf Σ-space.

Therefore, X has a countable network.

Proof. Let X be a hereditarily CL-charming space. Take a closed subspace Y of X

such that Y is a Lindelöf Σ -space. Obviously, X is hereditarily Lindelöf, hence Y has a

countable pseudocharacter in X. Put Y =
∩
k∈ω

Uk, where each Uk is an open neighborhood

in X. Since every X \ Uk is a Lindelöf Σ -space, we have that
∪

n∈ω
(X \ Un) is a Lindelöf

Σ -space. Therefore, ∪
n∈ω

(X \ Un) = X \
∩

n∈ω
Un = X \ Y

is a Lindelöf Σ -space. Then X = (X \ Y )
∪
Y is a Lindelöf Σ -space. Therefore, X is a

hereditarily Lindelöf Σ -space, which implies that X has a countable network (see Corollary

4.13 in [6]).

Theorem 4.2 A CO-charming space X with a point-countable base is metrizable.

Proof. Let B be a point-countable base of X. Since X is CO-charming, there exists a

compact subspace K of X such that K is a (P4,P4)-shell in X. Moreover, since a compact

space with a point-countable base is metrizable, K is a separable and metrizable space. Put

B′ = {B ∈ B : B
∩
K ̸= ∅}. Then B′ is countable since K is separable. Let

U = {
∪

F : F ⊂ B′, K ⊂
∪
F , |F| < ω}.

Then it is easy to check that U = {Un : n ∈ N} is a countable base of K in X. For each

n ∈ N, let Xn = X \ Un. Since each Xn is a Lindelöf Σ -subspace with a point-countable

base, each Xn is separable and metrizable by Theorem 3.3. Therefore,

X = K
∩
(X \K) = K

∩
(X \

∩
n∈N

Un) = K
∩ ∪

n∈N

(X \ Un),

which implies that X is separable. Since a separable space with a point-countable base has

a countable base, X is metrizable.

The following result gives a partial answer to Question 3.5.

Theorem 4.3 A CO-charming space with a Gδ-diagonal has a countable network.

Proof. Let X be a CO-charming space. Then there exists a compact subspace K of X

such that K is a (P4,P4)-shell in X. Since X has Gδ-diagonal, K is a Gδ-set in X by

Proposition 2.3 in [8]. Put K =
∩

n∈ω
Un, where each Un is open in X. For each n ∈ N, let

Xn = X \ Un. Then each Xn is a Lindelöf Σ -subspace in X. Hence

X \K = X \ (
∩

n∈ω
Un) =

∪
n∈ω

X \ Un =
∪

n∈ω
Xn

is a Lindelöf Σ -subspace. Therefore, X = K
∪
(X \K) is a Lindelöf Σ -space. By Theorem

4 in [2], X has a countable network.
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5 The Characterizations of Weak (i, j)-structured Spaces

Definition 5.1 For any i, j ∈ {0, 1, 2, 3, 4, 5}, a space X is called a weak (i, j)-structured

space if there exists a space Y which maps continuously onto X and perfectly onto a (i, j)-

structured space.

Obviously, each weak (1, 1)-structured space is a charming space, and hence it is a

Lindelöf space. However, the following question is still open.

Question 5.1 Is each charming space weak (1, 1)-structured?

Proposition 5.1 Each closed subspace F of a weak (i, j)-structured space X is also a

weakly (i, j)-structured space.

Proof. Take a space Y for which there exists a continuous onto map φ : Y → X and a

perfect map h : Y → M for some (i, j)-structured space M . Let F be a closed subspace

of Y and let Z = φ−1(F ). Then F is a continuous image of Z and it is easy to see that

h | Z : Z →M is a perfect map. Hence F is a weak (i, j)-structured space.

The following theorem gives a characterization of weak (i, j)-structured spaces. First,

we recall some concepts.

Any map φ from a space X to the family exp{Y } of subsets of Y is called multivalued;

for convenient, we always write φ: X → Y instead of φ: X → exp{Y }. A multivalued map

φ: X → Y is called compact-valued (resp., finite-valued) if the set φ(x) is compact (resp.,

finite) for each x ∈ X.

Let φ: X → Y be a multivalued map. For any A ⊂ X, we denote by φ(A) the set∪
{φ(x) : x ∈ A}, that is, φ(A) =

∪
{φ(x) : x ∈ A}; we say that the map φ is onto if

φ(X) = Y . The map φ is called upper semicontinuous if φ−1(U) = {x ∈ X : φ(x) ⊂ U} is

open in X for any open subset U in Y .

Theorem 5.1 For arbitrary i, j ∈ {0, 4, 5}, the following conditions are equivalent for

any space X:

(1) X is a weak (i, j)-structured space;

(2) there exist spaces K and M such that K is compact, M is an (i, j)-structured space

and X is a continuous images of a closed subspace of K ×M ;

(3) X belongs to any class P which satisfies the following conditions:

(a) P contains compact spaces and (i, j)-structured spaces;

(b) P is invariant under closed subspaces and continuous images;

(c) P5 × P is contained in P;

(4) there is an upper semicontinuous compact-valued onto a map φ : M → X for some

(i, j)-structured space M .

Proof. (1)⇒(2). There exists a space Y which maps continuously onto X and perfectly

onto an (i, j)-structured space M . Then we fix the respective perfect map h : Y →M . Let
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i : Y → βY be the identity embedding. Then the diagonal map g = h∆i : Y → M × βY is

perfect by Theorem 3.7.9 in [4], and so the set g(Y ) is closed inM×βY . Since g is injective,

g(Y ) is homeomorphic to Y , and hence X is a continuous image of g(Y ).

(2)⇒(3). Suppose that X is a continuous image of a closed subset F of the product

M ×K for some (i, j)-structured space M and compact space K. Take any class P as in

(2). Then K ∈ P and M ∈ P. Therefore M ×K ∈ P and hence F ∈ P as well since P

is invariant under closed subspaces. Since P is invariant under continuous images, we have

X ∈ P.

(3)⇒(1). First, we show if X satisfies (1) then any closed subspace F of X also satisfies

(1). Indeed, take a space Y for which there exists a continuous onto map φ : Y → X and a

perfect map h : Y →M for some (i, j)-structured space M . Let F is an any closed subspace

of X and let Z = φ−1(F ). Then F is a continuous image of Z and it is easy to see that

h | Z : Z →M is a perfect map. Hence F satisfies (1). It is evident that the class of spaces

satisfies (1) is invariant under continuous images. Moreover, the classes of (i, j)-structured

spaces and compact spaces satisfy (1).

(1)⇒(4). Suppose that X satisfies (1), i.e., there exists a space Y which maps con-

tinuously onto X and perfectly onto an (i, j)-structured space N . Fix the respective map

f : Y → X and a perfect map g : Y → N . Let M = g(Y ). For every x ∈ X, since the set

φ(x) = f(g−1(x)) ⊂ X is compact, φ : M → X is a compact-valued map. The map f is

surjective, and hence φ(M) = X. It is easy to see that φ is upper semicontinuous.

(4)⇒(2). Fix an (i, j)-structured space M and a compact-valued upper semicontinuous

onto map φ :M → X. Put F =
∪
{φ(x)× {x} : x ∈M}. Then F is contained in βX ×M .

Let π : βX ×M → βX be the projection. Then π(F ) = X so X is a continuous image of

F . Fix any point (x, t) ∈ (βX ×M) \F . Then x ̸∈ φ(t), and hence we can find disjoint sets

U, V ∈ τ(βX) such that x ∈ U and φ(t) ⊂ V . Since φ is upper semicontinuous, there exists

a setW ∈ τ(t,M) such that φ(W ) ⊂ V . It easily check that (x, t) ∈ U×W ⊂ (βX×M)\F,
therefore the set F is closed in βX ×M .

6 Rectifiable Spaces with a Weak (i, j)-structure

Recall that a topological group G is a group G with a (Hausdorff) topology such that

the product maps of G×G into G is jointly continuous and the inverse map of G onto itself

associating x−1 with arbitrary x ∈ G is continuous. A topological space G is said to be a

rectifiable space provided that there are a surjective homeomorphism φ : G×G→ G×G and

an element e ∈ G such that π1 ◦φ = π1 and for every x ∈ G we have φ(x, x) = (x, e), where

π1 : G×G→ G is the projection to the first coordinate. If G is a rectifiable space, then φ is

called a rectification on G. It is well known that rectifiable spaces are a good generalizations

of topological groups. In fact, for a topological group with the neutral element e, then

it is easy to see that the map φ(x, y) = (x, x−1y) is a rectification on G. However, the

7-dimensional sphere S7 is rectifiable but not a topological group (see [8]).
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Theorem 6.1 [9]–[11] A topological space G is rectifiable if and only if there exist a e ∈ G

and two continuous maps p : G2 → G, q : G2 → G such that for any x, y ∈ G the next

identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y and q(x, x) = e.

Given a rectification φ of the space G, we may obtain the mappings p and q in Theo-

rem 6.1 as follows. Let p = π2 ◦φ−1 and q = π2 ◦φ. Then the mappings p and q satisfy the

identities in Theorem 6.1, and both are open mappings.

Let G be a rectifiable space, and p be the multiplication on G. Further, we sometimes

write x · y instead of p(x, y) and A · B instead of p(A,B) for any A,B ⊂ G. Therefore,

q(x, y) is an element such that x · q(x, y) = y, since x · e = x · q(x, x) = x and x · q(x, e) = e,

it follows that e is a right neutral element for G and q(x, e) is a right inverse for x. Hence

a rectifiable space G is a topological algebraic system with operations p and q, a 0-ary

operation e, and identities as above. It is easy to see that this algebraic system need not to

satisfy the associative law about the multiplication operation p. Clearly, every topological

loop is rectifiable.

Lemma 6.1 If A is a subset of rectifiable space G, then H =
∪

n∈N

(An

∪
Bn) is also a

rectifiable subspace of G, where

A1 = A, B1 = q(A, e)
∪
q(A,A),

A2 = p(A1

∪
B1, A1

∪
B1), B2 = q(A1

∪
B1, A1

∪
B1),

An+1 = p(An

∪
Bn, An

∪
Bn), Bn+1 = q(An

∪
Bn, An

∪
Bn), n = 1, 2, · · ·

Obviously, if A is a Lindelöf Σ-subspace, then H is a Lindelöf Σ-space.

Proof. Since q(A,A) ⊂ B1, we have e ∈ B1. Therefore, it is easy to see that

An

∪
Bn ⊂ An+1

∪
Bn+1, n ∈ N.

Put

H =
∪

n∈N

(An

∪
Bn).

Next we shall prove that H is a rectifiable subspace of G. Indeed, take arbitrary points

x, y ∈ B. Then there exists an n ∈ N such that x, y ∈ An

∪
Bn, and hence

p(x, y) ∈ An+1

∪
Bn+1, q(x, y) ∈ An+1

∪
Bn+1.

Therefore, H is a rectifiable subspace of G.

Since the product of a countable family of Lindelöf Σ -space is Lindelöf Σ , it is easy to

see that H is Lindelöf Σ .

Theorem 6.2 Every charming rectifiable space G has a dense rectifiable subspace that is

a Lindelöf Σ-space.

Proof. Since G is charming, there exists a subspace B such that G is a (P4,P4)-shell of

G.

Case 1. B is dense in G.
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Take the smallest rectifiable subspace H of G such that L ⊂ G. Then H is also a Lindelöf

Σ -space by Lemma 6.1. Clearly, H is dense in G.

Case 2. B is not dense in G.

Then there exists a non-empty open subset U of G such that U
∩
B = ∅. Put V = G\U

is an open neighborhood of B, and hence U is a Lindelöf Σ -space. Then A = {x ·U : x ∈ G}
is an open cover of G, and each element of A is homeomorphic to U . Since G is Lindelöf,

there exists a countable subcover of A , and hence G is a Lindelöf Σ -space.

A topological space X has the Suslin property if every pairwise disjoint family of non-

empty open subsets of X is countable.

Lemma 6.2 [12] The Suslin number of an arbitrary Lindelöf Σ-rectifiable space G is count-

able.

Theorem 6.3 The Suslin number of an arbitrary charming rectifiable space G is count-

able.

Proof. By Theorem 6.2, G has a dense rectifiable subspace H which is a Lindelöf Σ -

subspace. Then the Suslin number of H is countable by Lemma 6.2. Since H is dense in G,

it follows that the Suslin number of G is countable.
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